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1. Introduction

There are striking parallels between standard techniques for studying the zeros of
single-variable polynomials with field coefficients and standard techniques for studying
the zeros of ordinary linear differential operators

∑
j fj(x) dj

dxj on appropriate fields
of functions. These become even more apparent when the latter are formulated
algebraically, and that is our first item of business.

Let R be a ring, not necessarily commutative, with unity (i.e., multiplicative
identity). A function δ : r ∈ R 7→ r ′ ∈ R is a derivation (on or of R ) if the
following two properties hold for all r1, r2 ∈ R:

• (“additivity”) (r1 + r2)
′ = r ′1 + r ′2, and

• (“the Leibniz rule”) (r1r2)
′ = r1r

′
2 + r ′1r2.

Note from the Leibniz rule and induction that

(1.1) (
∏n

j=1 rj)
′ =
∑

j r1r2 · · · rj−1r
′
jrj+1 · · · rn

for any n ≥ 2 and any r1, r2, . . . , rn ∈ R.
A pair (R, δ) as in the previous paragraph is called a differential ring, or a dif-

ferential field when R is a field, although when δ is clear from context one generally
refers to R as the differential ring (or field, as the case may be). Indeed, the custom
is to minimize specific reference to δ, within reason, by writing δnr as r(n) for any
non-negative integer n and any r ∈ R, where δ0r := r. For small n > 0 primes are
also used, e.g., r ′′ := δ2r = (r ′) ′ and r ′′′ := δ3r = (r ′′) ′. By regarding an element
r ∈ R as the left multiplication function µr : t ∈ R 7→ rt ∈ R one can view R
as sitting within the ring FR of (set-theoretic) functions f : R → R, and FR is
thereby endowed with the structure of an R-algebra. The derivation δ is obviously
an element of FR, and as a result one can consider the R-subalgebra R[δ] of FR

generated by R and δ. Any element of R[δ] can be expressed in the “polynomial”
form1

∑m
j=0 rjδ

j, and these are our generalizations of “linear ordinary differential
operators.”

The “parallels” alluded to in the opening paragraph should henceforth be regarded
as being between (ordinary) polynomials p =

∑n
j=0 rjx

j ∈ R[x] (with no derivation

assumed on R), and ordinary linear differential operators L = Lp =
∑n

j=0 rjδ
j ∈ R[δ].

1This form will be unique under quite mild assumptions which we will simply assume are satisfied,
and, to avoid a lengthy digression, will not state explicitly. Uniqueness holds, for example, when R
is the field C(z) of rational functions (quotients of polynomial functions) and δ = d

dz .
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However, before beginning that discussion it might be a good idea to point out one
major difference between the R-algebras R[x] and R[δ], i.e., that the former is
commutative (as readers are surely aware), while the latter is generally not (as readers
may not be aware). Indeed, for any r, t ∈ R one sees from the Leibniz rule that

(δ ◦ µr)(t) = δ(µr(t))

= δ(rt)

= r δt + δr t

= (µr ◦ δ)(t) + δrt

= (µr ◦ δ + µδr)(t),

and we therefore have

(1.2) δ ◦ µr = µr ◦ δ + µδr.

In keeping with blurring all distinction between r and µr, and minimizing specific
references to δ, this would generally be written

(1.3) δr = rδ + r ′ for all r ∈ R.

A derivation r ∈ R 7→ r ′ ∈ R is trivial when r ′ = 0 for all r ∈ R, and in that
case we see from (1.3) that R[δ] is commutative. Indeed, under that hypothesis
the correspondence x ↔ δ induces an isomorphism of the R-algebras R[x] and R[δ]
which one learns to exploit in a first course on ordinary differential equations, wherein
one generally assumes that R = R or C and that δ = d

dx
. In that context the first

hint of any parallelism between polynomials p =
∑n

j=0 rjx
j and the corresponding

linear operators Lp =
∑n

j=0 rjδ
j takes the form of the observation that for any λ ∈ R

one has Lpe
λx = p(λ)eλx, hence that for any root λ of p the function y = eλx is a

solution of the nth-order equation Lpy = 0.

For the remainder of the introduction R denotes a (commutative) integral domain
with unity 1 = 1R.

For our purposes the deeper analogies between polynomials and linear differential
operators are most easily revealed by treating the former in terms of Vandermonde
matrices and Vandermonde determinants. For ease of reference, and to establish our
notation, we recall the definitions.
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Suppose n ≥ 1 and r1, r2, . . . , rn are (not necessarily distinct) elements of R[x].
The classical Vandermonde matrix of r := (r1, r2, . . . , rn) ∈ R[x]n is defined to be
the n× n matrix

(1.4) vdmmR[x],n(r) := (ri−1
j ) ∈ R[x],

which is sometimes more conveniently expressed as vdmmR[x],n(r1, r2, . . . , rn). Using
full matrix notation the definition is:

(1.5) vdmmR[x],n(r) = vdmmR[x],n(r1, r2, . . . , rn) :=



1 1 · · · 1

r1 r2 · · · rn

...
...

rn−2
1 rn−2

2 · · · rn−2
n

rn−1
1 rn−1

2 · · · rn−1
n


,

The associated determinant

(1.6) vdmdR[x],n(r) = vdmdR[x],n(r1, r2, . . . , rn) := det(vdmmR[x],n(r))

is called the Vandermonde determinant of r = (r1, r2, . . . , rn).
When r ∈ R[x]n+1 has the form (t1, t2, . . . , tn, x), with tj ∈ R for j = 1, . . . , n,

it proves convenient to first express the (n + 1) × (n + 1) Vandermonde matrix
vdmmR[x],n+1(r) as vdmmR,n+1(t; x) = vdmmR,n+1(t1, t2, . . . , tn, x), and to then re-
label t as r and all tj as rj. In other words,

(1.7)



vdmmR,n+1(r; x) = vdmmR,n+1(r1, r2, . . . , rn; x)

:= vdmmR[x],n+1(r1, r2, . . . , rn, x)

=



1 · · · 1 1

r1 · · · rn x

...
...

rn−1
1 · · · rn−1

n xn−1

rn
1 · · · rn

n xn


.

The associated Vandermonde determinant is expressed accordingly, i.e.,

(1.8) vdmdR,n+1(r; x) := vdmdR[x],n+1(r1, r2, . . . , rn, x) := det(vdmmR,n+1(r; x)).
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Proposition 1.9 : Assume n ≥ 1, choose any (not necessarily distinct) elements
r1, r2, . . . , rn ∈ R, and set r := (r1, r2, . . . , rn) ∈ Rn. Then the following assertions
hold.

(a) The Vandermonde determinant vdmdR[x],n(r) has value
∏

i>j(ri − rj).

(b) The determinant vdmdR,n+1(r; x) has value vdmdR[x],n(r) ·
∏

j(x− rj).

(c) vdmdR[x],n(r) 6= 0 if and only if the elements rj are pairwise distinct.

(d) Suppose R is a field, n ≥ 1, p =
∑n

j=0 ajx
j ∈ R[x], and an 6= 0. Then p has

at most n roots in R. If the number of distinct roots of p in R is k ≥ 1,
then a collection of roots t1, t2, . . . , tk ∈ R of p is precisely that collection of
distinct roots if and only if vdmdR[x],k(t1, t2, . . . , tk) 6= 0.

(e) The determinant vdmdR,n+1(r; x) is a degree n polynomial in R[x] having
r1, r2, . . . , rn as a complete set of roots. Moreover, when vdmdR[x],n(r) is a unit
of R the rj are pairwise distinct and the product

(i)
(
vdmdR[x],n(r)

)−1 · vdmdR,n+1(r; x)

is a monic degree n polynomial in R[x] having precisely these roots.

(f) Suppose p ∈ R[x] is a monic polynomial of degree n ≥ 1 having r1, r2, . . . , rn

as a complete set of roots and vdmdR[x],n(r) is a unit of R. Then p must be
the polynomial defined in (i) of (e).

(g) Suppose r1, r2, . . . , rn are the zeros of a monic polynomial p = xn+
∑n−1

k=0 akx
k ∈

R[x]. Then

(ii) θ(vdmdR[x],n(r)) = −an−1 · vdmdR[x],n(r),

where θ(vdmdR[x],n(r)) denotes the determinant of the “modified” Vander-
monde matrix 

1 1 · · · 1

r1 r2 · · · rn

...
...

rn−2
1 rn−2

2 · · · rn−2
n

rn
1 rn

2 · · · rn
n


,
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(h) (Reduction of Degree) Suppose r, s ∈ R, r is a zero of a polynomial p =∑n
k=0 akx

k ∈ R[x], and s 6= 0. Then r + s is a zero of p if and only if s is
a zero of the polynomial

(iii)
∑n−1

j=0

(∑n
k=j+1

(
k

j + 1

)
akr

k−1−j

)
xj.

Assertions (d) and (e) can be summarized by the statement: a monic polynomial
in R[x] is uniquely determined by its roots.

As the reader may suspect, there are much simpler ways to state several of these
results. We have emphasized the Vandermonde formulation because, as we will see in
Proposition 1.18, it offers a very effective means for highlighting analogies between
polynomials and linear differential operators.

Proof :

(a) This is standard. A proof, generally by induction, can be found in any rea-
sonable2 text on linear algebra.

(b) Since the indicated determinant is the same as vdmdR[x],n+1(r1, r2, . . . , rn, x)
we see from (a) (with slight relabeling) that the value is

∏
j(x−rj)

∏
n≥i>j(ri−rj) =∏

j(x− rj) · vdmdR[x],n(r).

(c) Immediate from (a) and the integral domain hypothesis on R.

(d) Suppose t1, t2, . . . , tn+1 ∈ R are roots of p, i.e., that
∑n

i=0 ait
i
j = 0 for

j = 1, 2, . . . , n + 1. Express this collection of n + 1 equalities in the matrix form
1 t1 t21 · · · tn1

1 t2 t22 · · · tn2
...

...

1 tn+1 t2n+1 · · · tnn+1




a0

a1

...
an

 =


0

0

...

0

 .

The matrix on the left is immediately recognized as the transpose of the Vandermonde
matrix vdmmR[x],n=1(t1, t2, . . . , tn). Since determinants are unaffected by transposi-
tion, the corresponding determinant must be vdmdR[x],n+1(t1, t2, . . . , tn+1), which for
simplicity we abbreviate as v. If the collection t1, t2, . . . , tn+1 consists of distinct roots
of p in R then v 6= 0 by (c), and Cramer’s rule then forces a0 = a1 = · · · = an = 0.

2In the opinion of this author, a text on linear algebra is reasonable if and only if it contains a
proof of this result.
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Since an 6= 0, this contradiction proves that v = 0, hence by (c) that t1, t2, . . . , tn+1

are not all distinct. The collection of roots of p therefore contains at most n ele-
ments.

The final assertion is evident from (c).

(e) The initial assertion is immediate from (b). If vdmdR[x],n(r) is a unit it cannot
be 0, and the pairwise distinct assertion is then seen from (c). By (a) and (b) the
product appearing in (i) is equal to

∏
j(x− rj), and the final assertion follows.

(f) Denote the monic polynomial defined in (i) by q. Then either p = q, in which
case we are done, or p 6= q and deg(p− q) < n. The second alternative is impossible
by the integral domain hypothesis on R: a non-zero polynomial in R[x] can have no
more roots than its degree, whereas p− q admits the n distinct roots r1, r2, . . . , rn.

(g) By hypothesis we can replace each rn
j in the displayed matrix with

−
∑n−1

k akr
k
j , and then, using standard properties of determinants, reduce the ex-

pression to

θ(vdmdR[x],n(r)) =
∑n−1

k ak · det(



1 1 1 · · · 1

r1 r2 r3 · · · rn

...
...

rn−2
1 rn−2

2 rn−2
3 · · · rn−2

n

rk
1 rk

2 rk
3 · · · rk

n


).

The matrices corresponding to 1 ≤ k < n − 1 each have two equal rows, hence
determinant zero, and the matrix corresponding to k = n− 1 is vdmmR[x],n(r). The
result follows.

(h) From the binomial theorem we have

(r + s)k =
∑k

j=0

(
k

j

)
rk−jsk
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for any integer k ≥ 1. Therefore,∑n
k=0 ak(r + s)k = a0(r + s) +

∑n
k=1 ak(r + s)k

= a0(r + s) +
∑n

k=1 ak

∑k
j=0

(
k

j

)
rk−jsj

= a0(r + s) +
∑n

k=1 ak

[
rk +

∑k
j=1

(
k

j

)
rk−jsj

]

=
(∑n

k=0 akr
k
)

+
∑n

k=1

∑k
j=1

(
k

j

)
akr

k−jsj

= 0 +
∑n

j=1

(∑n
k=j

(
k

j

)
akr

k−j

)
sj

=
∑n−1

j=0

(∑n
k=j+1

(
k

j + 1

)
akr

k−(j+1)

)
sj+1

= s ·
∑n−1

j=0

(∑n
k=j+1

(
k

j + 1

)
akr

k−1−j

)
sj,

and (h) follows.

q.e.d.

Examples 1.10 : Proposition 1.9 has been formulated to stress analogies with linear
differential operators, and if that thought is not kept in mind several of assertions
can seem rather silly. This comment applies, in particular, to assertion (h). After all,
if we know that r is a root of p, the remaining roots will be the roots of the lower
degree polynomial p/(x − r), so why bother looking at the polynomial satisfied by
the difference of two roots? The answer from this author’s perspective is: because
the analogous concept for linear differential operators, i.e., “reduction of order,” is
a very important technique. In the polynomial context what the concept seems to
offer is an alternate approach to certain classes of problems, and therefore, perhaps,
a means to alleviate boredom.

(a) Let p ∈ Q[x] be the Lagrange interpolation polynomial of the data (x, y) =
(2, 0), (4, 7), (5, 0) and (8, 4), i.e., f = 67

72
x3 − 989

72
x2 + 2,155

36
x − 650

9
. From the

given initial data we see that p has roots r1 := 2 and r2 := 5, and by making
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the (arbitrary) choice r = r1 the polynomial in (iii) of Proposition 1.9(h) is
calculated to be

67
72
· (x2 − 587

67
x + 1158

67
= 67

72
· (x− 3)(x− 386

67
).

The root s = 3 of this lower degree polynomial corresponds to the known root
2 + s = 5 of f , and the choice s = 386

67
gives the remaining root 2 + 386

67
= 520

67

of f .

(b) (Tartaglia-Cardano) In combination with a few classically known variable
substitutions, Proposition 1.9(h) can be used to produce all the solutions of
any cubic equation

(i) x3 + a2x
2 + a1x + a0 = 0, with a0, a1, a2 ∈ Q.

(In fact the method works for a0, a1, a2 ∈ R, but the more general case is of
less historical interest.) We first note that a complex number y0 is a solution
to the equation

(ii) y3 + (a1 − a2
2/3)y + a0 + 2a3

2/27− a1a3/3 = 0

if and only if

(iii) x0 = y − a2/3

is a solution of (i), and we are therefore reduced to considering cubic equations
of the form

(iv) y3 + py + q = 0, p, q ∈ Q.

In order to apply Proposition 1.9(h) to this last equation we need only one
solution, and since y = (−q)1/3 is such when p = 0, we can assume w.l.o.g. that
p 6= 0. In that case the classical trick is to make the substitution

(v) y = 2 ·
√

3
3
·
√
|p| · z

in (iv), so as to convert that equation to

2
9
·
√

3 · |p|3/2 ·
(
4z3 + 3 · p

|p| · z + 3
2
·
√

3
|p|2 · q

)
= 0,

and the problem is thereby reduced to the consideration of

(vi) 4z3 ± 3z + r = 0, where r := 3
2
·
√

3
|p|2 · q,

and the choice of the plus or minus sign is made to agree with the sign of p/|p|.
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The Plus Case

In this case one sees from the hyperbolic function identity 4 sinh3 θ +3 sinh θ =
sinh 3θ that z = sinh(1

3
sinh−1 r) is a solution of (vi).

The Minus Cases

• If r ≥ 1 one sees from the identity 4 cosh3 θ − 3 cosh θ = cosh 3θ that
z = cosh(1

3
cosh−1(r)) is a solution.

• If r ≤ −1 we are reduced to the + case by replacing z by −z.

• If |r| < 1 one sees from the trigonometric identity 4 cos3 θ − 3 cos θ =
cos 3θ that z = cos(1

3
cos−1(r)) is a solution. (In fact in this subcase one

can produce three roots with this method.)

In summary3, we now see that we can always produce a solution z0 to (vi),
whereupon tracing backwards through substitutions (v) and (iii), and noting
that

p := a1 − a2
2/3,

q := a0 + 2a3
2/27− a1a3/3,

we conclude that

x0 :=

{
(−q)1/3 − a0

3
if p = 0; and

2 ·
√

3
3
·
√
|a1 − a2

2/3| · z0 − a0

3
otherwise,

where the square root in the last line denotes the non-negative square root, will
be a solution of (i).

To obtain two additional solutions check that the polynomial in (iii) of Propo-
sition 1.9(h), with n := 3 and r := x0, is given by

x2 + (a2 + 3x0)x + 3x2
0 + 2a2x0 + a1,

and that the roots of this polynomial are

1
2
·
(
−a2 − 3x0 ±

√
a2

2 − 2a2x0 − 3x2
0 − 4a1

)
.

3The argument thus far has been adapted from [B-M, Chapter IV, §4, Appendix, pp. 90-1].

10



The three (not necessarily distinct) solutions of (i) are therefore

x0,

x0 + 1
2

(
−a2 − 3x0 +

√
a2

2 − 2a2x0 − 3x2
0 − 4a1

)
, and

x0 + 1
2

(
a2 − 3x0 −

√
a2

2 − 2a2x0 − 3x2
0 − 4a1

)
.

Now assume, for the next four paragraphs, that R = (R, δ) is a differential ring
(or field).

Elements r ∈ R satisfying r ′ are the constants (of the derivation δ). They form
a subring RC ⊂ R (a subfield if R is a field) called the ring (resp. field ) of constants
(of R, or of (R, δ)). In particular, 0, 1 ∈ RC . Note from the definition of a derivation
that δ : R → R is an RC-linear map (when R is regarded as an RC-module).

Suppose L ∈ R[δ], say L =
∑n

j=0 ajδ
j. Since R[δ] ⊂ FR, we can view L as a

function from R into R, which from the conclusion of the previous paragraph must
be RC-linear, and it is therefore reasonable to refer to the kernel ker(L) of L. An
element r ∈ R within that kernel is called a zero of L, and also a solution of the
ordinary linear differential equation

(1.11)
∑n

j=0 ajy
(j) = 0.

Indeed, the condition L(r) = 0 for an element r ∈ R to be in ker(L) is precisely

(1.12)
∑n

j=0 ajs
(j) = 0.

The analogue for the differential ring R of the Vandermonde matrix the Wronski
matrix 4

(1.13) wrmR[δ],n(r) :=
(
r
(i−1)
j

)
, r := (r1, r2, . . . , rn) ∈ R[δ]n,

which is sometimes more conveniently expressed as wrmR[δ],n(r1, r2, . . . , rn). In full
matrix notation:

(1.14) wrmR[δ],n(r) = wrmR[δ],n(r1, r2, . . . , rn) :=



r1 r2 · · · rn

r ′1 r ′2 · · · r ′n
...

...

r
(n−2)
1 r

(n−2)
2 · · · r

(n−2)
n

r
(n−1)
1 r

(n−1)
2 · · · r

(n−1)
n


.

4This name is not common in the literature; it is used since it mimics the terminology “Vander-
monde matrix,” which one does encounter elsewhere.
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The associated determinant

(1.15) wronS[δ],n(r) := wronS[δ],n(r1, r2, . . . , rn) := det(wrmS[δ],n(r))

is called the5 Wronskian of r.
When r ∈ R[δ]n+1 has the form (t1, t2, . . . , tn, δ), with tj ∈ R for j = 1, . . . , n, it

proves convenient to first express the (n+1)×(n+1) Wronski matrix wrmR[δ],n+1(r)
as wrmR,n+1(t; δ) = wrmR,n+1(t1, t2, . . . , tn; δ) and to then relabel all tj as rj. In
other words,

(1.16)



wrmR,n+1(r; δ) = wrmR,n+1(r1, r2, . . . , rn; δ)

:= wrmR[δ],n+1(r1, r2, . . . , rn, δ)

=



r1 r2 · · · rn 1

r ′1 r ′2 · · · r ′n δ

...
...

r
(n−1)
1 r

(n−1)
2 · · · r

(n−1)
n δn−1

r
(n)
1 r

(n)
2 · · · r

(n)
n δn


.

Many of the familiar rules of determinants fail with this matrix since R[δ] is not
commutative, and as a result one needs to exercise caution. For example, when A
is a square matrix with entries in a commutative ring interchanging two columns of
a given matrix, and then two rows, will not change the determinant, but this fails

when the entries of A are in R[δ]. For example, if A =

[
r 1

r ′ δ

]
these successive

interchanges result in the matrix B :=

[
δ r ′

1 r

]
, and, assuming the usual definition

of determinant, we would find that

det(A) = rδ − r ′

= (δr − r ′)− r ′ (by (1.3))

= δr − 2r ′

6= δr − r ′ (assuming, of course, that 2r ′ 6= r ′)

= det(B).

5To be consistent with the terminology “Vandermonde determinant” one should here refer to
the “Wronski determinant,” but “Wronskian” is the accepted standard. (Alternatively, why not
“Vandermondian?”) This should also explain why this author did not use the notation wrdS[δ],n(r)
in place of wronS[δ],n(r).

12



For our purposes it suffices to define the ”determinant” of the displayed matrix in
(1.16) by

(1.17){
wronR,n+1(r; δ) :=

∑n+1
k=1(−1)n+k det((r

(σ(i)−1)
j ; k))δk−1

= wronR[δ],n(r)δn +
∑n

k=1(−1)n+k det((r
(σ(i)−1)
j ; k))δk−1,

where (r
(i−1)
j ; k) denotes the n×n matrix (with entries in the commutative ring R)

obtained by removing row k from the (n + 1) × n matrix (r
(i−1)
j ). In other words,

the determinant of this matrix is defined to be the result of the usual calculation of a
determinant by “expanding down the final column,” with the added proviso that in
each product appearing within the sum we must place the term from the last column in
the extreme right position. (Since R is assumed commutative, the minors appearing
in this definition obey the usual properties.) Thus, for example,

wronR,3(r; δ) = “ det “(

 r1 r2 1

r ′1 r ′2 δ

r ′′1 r ′′2 δ2

)

:= det(

[
r ′1 r ′2

r ′′1 r ′′2

]
)− det(

[
r1 r2

r ′′1 r ′′2

]
) · δ + det(

[
r1 r2

r ′1 r ′2

]
) · δ2

= (r ′1r
′′
2 − r ′2r

′′
1 )− (r1r

′′
2 − r2r

′′
1 ) · δ + (r1r

′
2 − r2r

′
1) · δ2.

In the following statement, and henceforth, Sn denotes the symmetric group
on n letters, i.e., the group (under composition) of bijections σ : {1, 2, . . . , n} →
{1, 2, . . . , n}. The sign of a permutation σ ∈ Sn is denoted sgn(σ).

Proposition 1.18 : Assume δ : R → R is a derivation, let n ≥ 1, choose any (not
necessarily distinct) elements r1, r2, . . . , rn ∈ R, and set r := (r1, r2, . . . , rn) ∈ Rn.
Then the following assertions hold.

(a) The Wronskian determinant wronR[δ],n(r) has value
∑

σ∈Sn
sgn(σ)

∏
j r

(σ(i)−1)
j .

(b) The “determinant“ wronR,n+1(δ, r) has value
∑n+1

k=1(−1)k+1 det((r
(σ(i)−1)
j ; k))δk−1.

(c) Suppose R is a field. Then wronR[δ],n(r) 6= 0 if and only if the elements rj

are linearly independent over RC.

(d) Suppose R is a field, n ≥ 0, L =
∑n

j=0 ajδ
j ∈ R[δ], and an 6= 0. Then ker(L)

is a vector space over RC of dimension at most n. If dimKC
(ker(L)) = k, a

13



collection t1, t2, . . . , tk ∈ ker(L) is a basis if and only if wronK[x],k(t1, t2, . . . , tk)
6= 0.

(e) The “determinant“ wronR,n+1(r; δ) is a linear differential operator of order at
most n having r1, r2, . . . , rn as zeros. Moreover, when wronR[δ],n(r) is a unit
of R the rj are pairwise distinct and the product

(i)
(
wronR[δ],n(r)

)−1 · wronR,n+1(r; δ)

is a monic linear differential operator of order n in R[δ] with kernel having
r1, r2, . . . , rn as a basis.

(f) Suppose R is a field, that L ∈ R[δ] is a monic linear differential operator of
order n ≥ 1 with kernel containing r1, r2, . . . , rn, and that wronR[δ],n(r) 6= 0.
Then L must be the linear differential operator defined in (i) of (e), and
r1, r2, . . . , rn must be a basis of ker(L).

(g) (Abel-Liouville) Suppose r1, r2, . . . , rn ∈ R are zeros of a linear differential
operator L = δn +

∑n−1
k=0 akδ

k ∈ R[δ]. Then

(ii) δ(wronR[δ],n(r)) = −an−1 · wronR[δ],n(r).

(h) (Reduction of Order) Suppose r, s ∈ R and r is a zero of a linear differ-
ential operator L =

∑n
k=0 akδ

k ∈ R[δ]. Then rs is a zero of L if and only if
s ′ is a zero of the linear differential operator

(iii)
∑n−1

j=0

(∑n
k=j+1

(
k

j + 1

)
akr

(k−1−j)

)
δj.

Proof :

(a) Obvious from (1.13) (and the formula det(A) =
∑

σ∈Sn
sgn(σ)

∏n
j=1 aσ(i)j for

computing the determinant of a square matrix A = (aij)).

(b) This simply repeats definition (1.17).

(c) We will prove the contrapositive equivalence: that the Wronskian is zero if
and only if the elements r1, r2, . . . , rn are linearly dependent over RC .

The vanishing of that Wronskian is equivalent to the existence of a dependence
relation (over R) among the columns of wrmR[x],n(r). From the structure exhibited

14



in (1.13) this in turn is seen to have the following equivalent formulation: there are
elements c1, c2, . . . , cn ∈ R, not all 0, such that

(iv)
∑n

j=1 cjr
(m)
j = 0 for m = 0, . . . , n− 1.

We are thereby reduced to proving:

Equalities (iv) hold, for some collection c1, c2, . . . , cn ∈ R, not all of
which vanish, if and only if the collection r1, r2, . . . , rn is linearly depen-
dent over RC.

⇒ We argue by induction on n ≥ 1. As the case n = 1 is trivial, we may assume
that n > 1 in (iv) and that the result holds for any subset of R with at most n− 1
elements.

If c1 = 0 in (iv) the given sums can be expressed as
∑n

j=2 cjr
(m)
n , with not all

of c2, c3, . . . , cn ∈ R equal to 0, and from the induction hypothesis we can then
conclude that r2, r3, . . . , rn are linearly dependent over RC . The same then holds for
r1, r2, . . . , rn.

If c1 6= 0 in (iv) then6 w.l.o.g. we may assume that c1 = 1. For m = 0, 1, . . . , n−
2 we then see from (iv) and the membership 1 ∈ RC that

0 = (
∑n

j=1 cjr
(m)
j ) ′

=
∑n

j=1 cjr
(m+1)
j +

∑n
j=2 c ′jr

(m)
j

= 0 +
∑n

j=2 c ′jr
(m)
j (again by (iv))

=
∑n

j=2 c ′jr
(m)
j .

There are now two possibilities: c ′j 6= 0 for at least one j between 2 and n; or
c ′j = 0 for all such j.

In the first case the calculation establishes a dependence relation over R for the
collection r2, r3, . . . , rn, and by induction there is then such a relation over RC , say
0 =

∑n
j=2 ĉjrj, where ĉj ∈ RC for j = 2, 3, . . . , n and not all vanish. By expressing

the relation as 0 = 0 · r1 +
∑n

j=2 ĉjrj, and recalling that 0 ∈ RC , we conclude that
the collection r1, r2, . . . , rn is linearly dependent over RC .

In the second case we have cj ∈ RC for j = 2, 3, . . . , n, and, because we are
assuming c1 = 1, equality (iv) for m = 0 is simply r1 +

∑n
j=1 cjrj = 0. Since

1 ∈ RC , and we have therefore constructed a dependence relation for r1, r2, . . . , rn

over RC .

6This is where the field hypothesis is used.
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⇐ If the collection r1, r2, . . . , rn is linearly dependent over RC there are elements
c1, c2, . . . , cn ∈ RC , not all 0, such that

∑n
j=1 cjrj = 0. Using the RC-linearity of δ

we then see that m applications of this derivation, for any integer 1 ≤ m ≤ n − 1,
gives

∑n
j=1 cjr

(m)
j = 0, precisely as required.

(d) As already noted, following the proof of Proposition 1.9, the mapping
L : R → R is linear over RC , and by elementary linear algebra the kernel of a
linear operator is always a subspace. To prove the dimension statement suppose
t1, t2, . . . , tn+1 ∈ R are in ker(L), i.e., that

∑
i ait

(i)
j = 0 for j = 1, 2, . . . , n + 1.

Express this collection of n + 1 equations in the matrix form
t1 t ′1 t ′′1 · · · t

(n)
1

t2 t ′2 t ′′2 · · · t
(n)
2

...
...

tn+1 t ′n+1 t ′′n+1 · · · t
(n)
n+1




a0

a1

...

an

 =


0

0

...

0

 ,

and note that the determinant of the matrix on the left is wronR[x],n+1(t1, t2, . . . , tn+1),
which for simplicity we abbreviate as w. If the collection t1, t2, . . . , tn+1 is linearly
independent over RC then w 6= 0 by (c), and Cramer’s rule then forces a0 = a1 =
· · · = an = 0. Since an 6= 0, this contradiction proves that w = 0, hence by (c) that
t1, t2, . . . , tn+1 are linearly dependent over KC . A basis for ker(L) therefore contains
at most n elements. In particular, dimKC

(ker(L)) ≤ n.
The final assertion of (d) is, by (c), equivalent to the assertion that t1, t2, . . . , tk

is a basis of ker(L) if and only if this collection is linearly independent over RC .
Since a basis is, by definition, linearly independent over the ground field, the for-
ward implication is trivial. Conversely, by elementary linear algebra any collection
t1, t2, . . . , tk within ker(L) which is linearly independent over RC can be extended
to a basis of ker(L), and therefore must be a basis since dimKC

(ker(L)) = k.

(e) The initial assertion is immediate from (b). If wronR[δ],n(r) is a unit of R then
from the second line in definition (1.17) we see that this linear differential operator
will have order n, and that the linear differential operator defined in (i) of (e) is
monic. The basis assertion is a special case of (d).

(f) First note by (d) that the collection r1, r2, . . . , rn must be a basis of ker(L).
Denote the monic linear differential operator defined in (i) by L̂. Then either

L = L̂, in which case we are done, or L 6= L̂ and the order of the non-zero linear dif-
ferential operator L−L̂ ∈ R[δ] is less than n. But this operator admits r1, r2, . . . , rn

as zeros, and the second alternative is therefore impossible by (d) (applied to L−L̂).
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(g) For any n×n matrix S = (sij) with entries in R one sees from the determi-
nant expansion det(S) =

∑
σ∈Sn

sgn(σ)
∏

j sσ(j)j and (1.1) that

δ(det(S)) =
∑

σ∈Sn
sgn(σ)

∑n
i=1 sσ(1)1 · · · sσ(i−1),i−1 · s ′σ(i)i · sσ(i+1),i+1 · · · sσ(n)n

=
∑n

i=1

(∑
σ∈Sn

sgn(σ)sσ(1)1 · · · sσ(i−1),i−1 · s ′σ(i)i · sσ(i+1),i+1 · · · sσ(n),n

)

=
∑n

i=1 det(



s11 s12 s13 · · · s1n

...
...

si−1,1 si−1,2 si−1,3 · · · si−1,n

s ′i,1 s ′i,2 s ′i,3 · · · s ′i,n

si+1,1 si+1,2 si+1,3 · · · si+1,n

...
...

sn1 sn2 sn3 · · · snn


).

When S = wronR[δ],n(r) we see from (1.13) that each of the matrices involved in
this sum has two equal rows when j 6= n, from which we deduce that

δ(wronR[δ],n(r)) = det(



r1 r2 r3 · · · rn

r ′1 r ′2 r ′3 · · · r ′n
...

...

r
(n−2)
1 r

(n−2)
2 r

(n−2)
3 · · · r

(n−2)
n

r
(n)
1 r

(n)
2 r

(n)
3 · · · r

(n)
n


).

However, from the solution hypothesis we can replace each r
(n)
j in this matrix with

−
∑n−1

k akr
(k)
j , and then, using standard properties of determinants, reduce the ex-

pression to

δ(wronR[δ],n(r)) =
∑n−1

k ak · det(



r1 r2 r3 · · · rn

r ′1 r ′2 r ′3 · · · r ′n
...

...

r
(n−2)
1 r

(n−2)
2 r

(n−2)
3 · · · r

(n−2)
n

r
(k)
1 r

(k)
2 r

(k)
3 · · · r

(k)
n


).
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The matrices corresponding to 1 ≤ k < n − 1 each have two equal rows, hence
determinant zero, and the matrix corresponding to k = n − 1 is wronR[δ],n(r). The
Abel-Liouville formula follows.

(h) First note, by induction, that

(rs)(k) =
∑k

j=0

(
k

j

)
r(k−j)s(k)

for any integer k ≥ 1. We therefore have∑n
k=0 ak(rs)

(k) = a0(rs) +
∑n

k=1 ak(rs)
(k)

= a0(rs) +
∑n

k=1 ak

∑k
j=0

(
k

j

)
r(k−j)s(j)

= a0(rs) +
∑n

k=1 ak

[
r(k)s +

∑k
j=1

(
k

j

)
r(k−j)s(j)

]

=
(∑n

k=0 akr
(k)
)
s +

∑n
k=1

∑k
j=1

(
k

j

)
akr

(k−j)s(j)

= 0 · s +
∑n

j=1

(∑n
k=j

(
k

j

)
akr

(k−j)

)
s(j)

=
∑n−1

j=0

(∑n
k=j+1

(
k

j + 1

)
akr

(k−(j+1))

)
s(j+1)

=
∑n−1

j=0

(∑n
k=j+1

(
k

j + 1

)
akr

(k−1−j)

)
(s ′)(j),

and (h) follows.

q.e.d.

The parallels between polynomials and ordinary linear differential operators ex-
tend to Galois theory. We assume readers are familiar with the Galois theory of
separable polynomials, which we will refer to as “classical Galois theory,” but not
with that of ordinary linear differential operators, commonly called differential Ga-
lois theory. To indicate the parallels for these theories, and to give the motivation
behind these notes, we offer a quick (and technically incomplete) sketch of the latter
theory, always assuming that R is a differential field.
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One begins with a monic linear differential operator L = δn +
∑n−1

k=0 rkδ
k ∈ R[δ] of

order n ≥ 1, and, to make the situation challenging, assumes that R does not contain
a basis of solutions. To achieve such a basis one constructs an appropriate field T
containing R which admits a derivation extending that on R and does contain such
a basis. The subfield S ⊂ T generated by R and this basis, which is the analogue
of a splitting field of a polynomial, is called a Picard-Vessiot extension for L. The
differential Galois group of L is defined to be the group of automorphisms of S
over R which commute with the (extended) derivation on S. Thus far, the parallels
with classical Galois theory are clear7, but we will not venture, at least temporarily,
further from the shore.

It is well-known that the nth-order equation L = 0 is equivalent to the first-order
system

(1.19) x ′ = Ax

of ordinary linear differential equations, where

(1.20) A :=



0 1 0 · · · 0

0 0 1
. . . 0

...
...

0 0 · · · 0 1

−r0 −r1 · · · −rn−2 −rn−1


is the transpose of the companion matrix of the “obvious” polynomial xn+

∑n−1
k=1 rkx

k

which one would associate with L. One might therefore ask: is there a differential
Galois theory for arbitrary first-order linear systems as in (1.19), but with the n×n
matrix A not necessarily of the form (1.20)? The answer is yes, and the generalization
involves practically no additional work, but the analogies with classical Galois theory
begin to blur.

Things become even murkier when one realizes that when P ∈ GL(n,R) and one
substitutes x = Py in (1.19), obtaining

(1.21) y ′ = By, where B := P−1AP − P−1P,

precisely the same Picard-Vessiot extension and Galois group result. In fancier lan-
guage: the differential Galois group is invariant under “gauge transformations,” i.e.,

7But there are major differences, e.g., the differential Galois group can be infinite, but always
has a faithful representation as a linear algebraic group.
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under the action of GL(n, R) on the space of n× n matrices A (with entries in R)
defined by P · A := P−1AP − P−1P ′. This seems to have no analogue in classical
Galois theory, but we will find, by reformulating the classical theory, that this is not
the case.

What this invariance suggests is that the differential Galois group should not be
associated with first-order systems, but with some other entity which admits first-
order systems as “coordinate” representations. And this works out beautifully.

Assuming V is an n-dimensional vector space over R, define a differential struc-
ture on V to be a mapping D : V → V such that the following two properties hold
for all v1, v2, v ∈ V and all r ∈ R:

• (“additivity”) D(v1 + v2) = Dv1 + Dv2 and

• (“the Leibniz rule”) D(rv) = rDv + r ′v.

When D : V → V is a differential structure and V ∗ denotes the dual space of
V a corresponding differential structure D∗ : V ∗ → V ∗ is defined by

(1.22) D∗v∗(v) := (v∗(v)) ′ − v∗(Dv), v∗ ∈ V ∗, v ∈ V,

as the reader can easily check. This is the dual (differential ) structure of D, or the
(differential ) structure dual to D. If for w∗ ∈ V ∗ and v ∈ V we write w∗v ∈ R as
〈v, w∗〉, then (1.22) can be expressed as the classical Lagrange identity

(1.23) 〈v, v∗〉 ′ = 〈Dv, v∗〉+ 〈v, D∗v∗〉,

which has a well-known counterpart in differential geometry.
When D : V → V is a differential structure a vector v ∈ V is called8 horizontal,

or D-horizontal when D needs clarification, if Dv = 0. When e = (ej)
n
j=1 is a(n

ordered) basis of V one defines an n× n matrix A = (aij) with entries in R by

(1.24) Dej :=
∑n

i=1−aijei, j = 1, 2, . . . , n,

and one then has

(1.25) Dv = w ⇔ v ′
e − Ave = we,

8The terminology is from differential geometry: our differential structures lie somewhere between
first order systems of linear differential equations and the “connections” one learns about in that
subject.
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where ue denotes the column vector of coefficients uj of a typical vector u =∑n
j=1 ujej ∈ V and u ′

e is the column vector with entries u ′
j. The search for so-

lutions for

(1.26) x ′ = Ax

is now seen to be a search, by means of a choice of basis, for horizontal vectors. We
refer to the matrix A in (1.24) as the e-matrix of D, and to (1.26) as the e-basis
representation of D. When e is clear from context, or specifying e is not essential,
we simply refer to A as the (corresponding ) matrix of D, and to (1.26) as the
(corresponding) basis representation of D. When A is the e-matrix of D, and e∗ is
the dual basis V ∗, one checks that the e∗-matrix of the dual structure D∗ : V ∗ → V ∗

to D is −Aτ , where the Greek letter τ (tau) denotes transposition. The e∗-basis
representation of D∗ is therefore given by the so-called “adjoint equation”

(1.27) x ′ = −Aτx

of (1.26).
We also use the “e-matrix” terminology with linear operators T : V → V : if e

is a basis of V the e-matrix of T is the n× n matrix A = (aij) with entries in R
defined by

(1.28) Tej =
∑n

j=1 aijei, j = 1, 2, . . . , n.

As one learns in elementary linear algebra (although perhaps with different notation
and terminology), T and A are related by

(1.29) Tv = w ⇔ (Tv)e = Ave = we

for all vector v, w ∈ V . The equivalence seen in (1.25) is the direct analogue for
differential structures.
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When phrased in terms of differential structures an extension S ⊃ R of differential
fields9 is a Picard-Vessiot extension for D if the following three conditions hold:

(I) (“no new constants”) SC = RC ;

(II) the S-vector space10 VS := S ⊗R V admits a basis consisting of horizontal
vectors for the unique differential structure11 DS :

∑
k sj ⊗ vj ∈ VS 7→

∑
k(sj ⊗

Dvj + s ′j ⊗ vj) ∈ VS extending D.

(III) (“minimality”) If T ⊃ R is any differential field extension satisfying the first
two items there is a differential embedding η : S → T over12 R.

Assuming such an extension exists13 we define the differential Galois group of D
exactly as before, i.e., as the group of automorphisms of S over R which commute
with the derivation on S.

Assuming S ⊃ R is a Picard-Vessiot extension for D and G is the associated
differential Galois group, define a representation ρ : G → GL(VS, S), which we often
express as an action, by

(1.30) ρ(g)(s⊗ v) = g · (s⊗ v) := (g · s)⊗ v, s⊗ v ∈ VS.

Theorem 1.31 : For any g ∈ G one has

(i) ρ(g) ◦DS = DS ◦ ρ(g).

In fancier language: DS is equivariant w.r.t. the given G-action on VS.

9The definition of a differential field extension requires that the derivation on S restricts to that
on R.

10Those not familiar with tensor products can think of VS as what results by choosing a basis
e for V and then allowing vector coefficients to be in S. In particular, one can regard V as a
subspace of VS (when the latter is viewed as an R-space), and the basis e of the R-space V as
a basis of the S-space VS , which has the important consequence that dimS(VS) = dimR(V ). The
tensor product achieves such results in a purely geometric way, i.e., without reference to bases.

11Since D : V → V is not R-linear, one must do a bit of work to see that this function is
well-defined. See [C, §8, Proposition 8.4].

12That is, a field embedding η : S → T which fixes R pointwise and satisfies δT ◦ η = η ◦ δS ,
where δT and δS are the respective derivations on T and S extending the given derivation on R.

13Which is not guaranteed. For a general existence theorem one needs assume the characteristic
of R is zero and that the field of constants RC is algebraically closed. See, e.g., [vdP-S].
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Proof : For any s⊗ v ∈ VS one has

(ρ(g) ◦DS)(s⊗ v) = g · (s⊗Dv + s ′ ⊗ v)

= (g · s)⊗Dv + g · (s ′ ⊗ v)

= (g · s)⊗Dv + (g · s ′)⊗ v

= (g · s)⊗Dv + (g · s) ′ ⊗ v

= DS(g · (s⊗ v))

= (DS ◦ ρ(g))(s⊗ v).

q.e.d.

Corollary 1.32 : G permutes the horizontal vectors of VS.

When S ⊃ R is a Picard-Vessiot extension for a differential structure D : V → V
a matrix α = (αij) ∈ GL(n, S) is called a fundamental matrix for D if there is a
basis e of V such that α and the e-matrix A of D are related by

(1.33) α ′ = Aα,

where

(1.34) α ′ := (α ′
ij),

Any such α is also called a fundamental matrix for the e-basis representation x ′ =
Ax of D. Indeed, both α and the columns αj of this matrix satisfy this last system of
equations. When we need to make e explicit we refer to such an α as a fundamental
e-matrix for D.

Proposition 1.35 : When D : V → V is a differential structure and S ⊃ R is a
Picard-Vessiot extension, the field S is generated by R and any fundamental matrix
for D.

Proof : See [C, Proposition 9.3(c2)].

Let D : V → V and S ⊃ R be as in Proposition 1.35. Define an action of the
associated differential Galois group G of D on the collection of n×n matrices with
entries in S by

(1.36) g · (sij) := (g · sij).
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Now pick a basis e for V , let

(1.37) x ′ = Ax

be the associated e-matrix representation of D, and let α ∈ GL(n, S) be a funda-
mental matrix of D.

Theorem 1.38 : Assume the notation of the previous paragraph and let α ∈ GL(n, S)
be a fundamental e-matrix for D. Then:

(a) for any fundamental e-matrix for D one has α−1β ∈ GL(n,RC);

(b) for any g ∈ G the matrix g · α is also a fundamental e-matrix for D; and

(c) the mapping ρ : g ∈ G 7→ α−1(g · α) ∈ GL(n,RC) is a faithful matrix represen-
tation.

In the final assertion α−1(g · α) denotes the product of the matrices α−1 and
g · α.

Proof : For (a) and (b) see, e.g., [C]. Assertion (c) is implicit in [Lev], and the
proof is fairly straightforward. (This author has worked through the details, but is
not aware of a published reference.) q.e.d.

The goal of these notes is to formulate and prove analogues of Theorem 1.38(b)
and (c) for classical Galois theory. For (b) the goal is achieved in Proposition 9.3;
for (c) in Theorem 9.16 and Corollary 9.18. The obvious analogue of Theorem
1.38(a) fails with our approach (see Example 6.4(a)), but this causes little trouble14.

The basic idea is not to associate the classical Galois extension with a separable
polynomial, but rather with a linear operator having that polynomial as characteristic
polynomial. The e-matrices for a differential structure then correspond to the e-
matrices of a linear operator. We develop the analogue of a fundamental matrix, and
use these matrices as in Theorem 1.38 to define a faithful matrix representation of the
Galois group. As the reader might expect, the representing matrices are nothing but
permutation matrices, and in that regard we obtain nothing new. In fact computing
the group by classical methods is probably much easier, but the approach herein
makes the connections with differential Galois theory far more transparent.

14The mapping γ defined in (9.10) enables one to circumvent any difficulties.
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Fundamental to our approach is the notion of a “cyclic vector.” For a linear oper-
ator T : V → V on an n-dimensional space a vector v ∈ V is cyclic if the collection
v, Tv, T 2v, . . . , T n−1v is a basis. By replacing T by D, one obtains the definition
for a differential structure. For linear operators such vectors are not to be expected,
but for differential structures they are plentiful: their existence is guaranteed under
very mild hypotheses (see, e.g., [C-K]). In the differential case such vectors for dual
structures D∗ : V ∗ → V ∗ guarantee that first-order systems can be expressed as
nth-order equations, which is of great practical importance. One can say a bit more
(as will be seen in Corollary 1.41).

Proposition 1.39 : When D : V → V is a differential structure on an R-space
V of dimension n the following statements are equivalent.

(a) D∗ : V ∗ → V ∗ admits a cyclic vector.

(b) There is a basis e of V such that the e-matrix of D has the form

(i) A =



0 1 0 · · · 0

0 0 1
. . .

...
...

. . . 0

0 0 · · · 0 1

−a0 −a1 · · · −an−1 −an


.

Proof : Let e be a basis of V and let e∗ = (e∗j)
n
j=1 be the (corresponding) dual

basis of V ∗. Then from the discussion leading to (1.27) we see that the e-matrix of
D has the form seen in (i) if and only if the e∗-matrix of D∗ has the form

(ii) B :=



0 0 0 · · · 0 a0

−1 0 0 · · · 0 a1

0 −1 0 · · · 0 a2

...
. . . . . . . . .

...

0 · · · 0 −1 0 an−1

0 · · · 0 0 −1 an


.

and from (1.24) we see that the e∗-matrix of D∗ has this form if and only if e∗1 is
a cyclic vector. q.e.d.
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Proposition 1.40 : Let D : V → V be a differential structure, let S ⊃ R be a
Picard-Vessiot extension for D, and let A be as in (i) of Proposition 1.39. Choose
any elements s1, s2, . . . , sn ∈ S, and set s := [s1 s2 · · · sn]τ . Then

(i) s ′ = As ⇔



s =


s1

s ′1
...

s
(n−1)
1


and

s1 is a solution of the linear differential equation

y(n) +
∑n−1

k=0 aky
(k) = 0.

Proof : From

As =



0 1 0 · · · 0

0 0 1
. . .

...

...
. . . 0

0 0 · · · 0 1

−a0 −a1 · · · −an−1 −an





s1

s2

...
sn−1

sn


=



s2

s3

...

sn

−
∑n

j=0 ajsj+1


one sees that

s ′ = As ⇔



s2 = s ′1

s3 = s ′2 = s ′′1
...

sn = s ′n−1 = s
(n−1)
1

and

s ′n = s
(n)
1 = −

∑n−1
j=0 ajs

(j)
1

⇔



s1 is a solution of y(n) +
∑n−1

j=0 any
(j) and

s =


s1

s ′1
...

s
(n−1)
1

 ,
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precisely as claimed. q.e.d.

Corollary 1.41 : Suppose D∗ admits a cyclic vector, s1, s2, . . . , sn ∈ S are linearly
independent over RC, and s := (s1, s2, . . . , sn) ∈ Sn. Then the following assertions
are equivalent.

(a) The Wronski matrix wrmR[x],n(s) is a fundamental matrix of D.

(b) The elements s1, s2, . . . , sn ∈ S form a basis of solutions for the nth-order
linear differential equation

∑n
k=0 aky

(k) = 0, where the ak are as in (i) of
Proposition 1.40.

Proof :
(a) ⇒ (b) : When (a) holds each column s of wrmR[x],n(r) satisfies s ′ = As,

and (b) then follows from Propositions 1.40 and 1.18(c).

(b) ⇒ (a) : If (b) holds we see from Proposition 1.40 that (wrmR[x],n(r)) ′ =
A · wrmR[x],n(r), and from Proposition 1.18(c) that wrmR[x],n(r) ∈ GL(n,R).

q.e.d.

If the notes we will develop the analogue for a class of operators T : V → V
having duals T ∗ : V ∗ → V ∗ which admit cyclic vectors.
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2. Preliminaries on Cyclic Vectors

In this section T : V → V is a K-linear operator.

This section is a self-contained introduction (modulo several proofs) to cyclic
vectors for linear operators. For ease of reference some of the work in the introduction
will be repeated.

A vector v ∈ V is cyclic (w.r.t. T ) if (v, Tv, T 2v, . . . , T n−1v) is a basis of V .
When such a v exists we say that T is cyclic, or that T admits a cyclic vector. The
following observation will simplify the presentation of examples.

Proposition 2.1 : The following assertions are equivalent:

(a) T is cyclic;

(b) there is a basis e of V such that the e-matrix of T has the companion matrix
form

(i)



0 0 0 · · · 0 −k0

1 0 0 0 −k1

0 1 0
. . .

... −k2

...
. . .

0 0 1 0 −kn−2

0 0 · · · 0 1 −kn−1


;

(c) the characteristic and minimal polynomials of T are identical; and

(d) the minimal polynomial of T has degree n = dimK(V ).

Moreover, when any (and therefore all) of these assertions holds the characteristic
and minimal polynomials of T are both given by

(ii) charT,K(x) = minT,K(x) = xn +
∑n−1

j=0 kjx
j,

where the kj are as in (i). In particular, the companion matrix in (i) is the unique
such matrix representation of T .
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Note that assertions (a), (c) and (d) are independent of bases. We view assertion
(a) as geometric; (c) and (d) as algebraic. In the statements of (c) and (d) the
polynomials are understood to be in K[x].

Also note that the matrix appearing in (i) is the rational (canonical) form of T ,
and recall from elementary linear algebra that the rational form of a linear operator
is unique.

Proof :

(a) ⇔ (b) : Obvious.

(b) ⇒ (c) : See, e.g., [M-B, Chapter IX, §6, Proposition 13, p. 315].

(c) ⇒ (b) : See, e.g., [M-B, Chapter X, §4, Theorem 8 and Corollary 1, p. 351].

(c) ⇒ (d) : Obvious.

(d) ⇒ (c) : The characteristic polynomial has degree n = dimK(V ), and both
polynomials are monic. If they do not agree, subtraction would produce a polynomial
of lower degree satisfied by T , thereby contradicting minimality.

The final assertions are easy consequences of (i).

q.e.d.

Examples 2.2 : In these examples we take K = Q, V = Kn, where n = 2, 3 or 4,
we let e = (ej)

n
j=1 be the usual basis, and we let T : V → V denote the K-linear

operator with e-matrix A.

(a) Take A =

[
1 −2

1 4

]
. The rational form is

[
0 −6

1 5

]
, and from Proposition

2.1 we conclude that T admits a cyclic vector. In fact e1 ∈ Q2 is such a vector,
as the reader can easily check, but there are many more, e.g., e2 and e1 + e2.

(b) Let A :=

 −3 5 −1

10 −15 3

61 −89 18

. Then charT,Q(x) = minT,Q(x) = x3 − x + 1, and

we conclude from Proposition 2.1(c) (or (d)) that T is cyclic. In this case
e1 ∈ Q3 is a cyclic vector and, once again, there are many more.

(c) The rational form of A :=


−35 −7 −19 −3

31 −35 −34 −10

216 8 75 8

−957 82 −186 1

 is


0 0 3 0

1 0 −1 0

0 1 3 0

0 0 0 3

.

Since this rational form is not a companion matrix, T is not cyclic (Proposi-
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tion 2.1(b)). This conclusion can also be seen from the fact that the minimal
polynomial x3− 3x2 + x− 3 does not have degree 4 = dimQ(Q4) (Proposition
2.1(d)).

Proposition 2.3 : A linear operator T : V → V is cyclic if and only if the dual
operator T ∗ : V ∗ → V ∗ is cyclic.

By the dual operator of T we mean the linear operator on V ∗ defined by v∗ 7→
(v ∈ V 7→ v∗(Tv)) ∈ V ∗. The concept (perhaps by some other name) is assumed
familiar, as is the fact that when e is a basis of V , and e∗ is the dual basis of V ∗,
the e-matrix of T is A if and only if the e∗-matrix of T ∗ is Aτ .

We give two proofs of this proposition. The first views the result a corollary
of Proposition 2.1; the second motivates our proof of the corresponding result for
differential structures (Proposition 2.7).

First Proof : One needs the fact that A and Aτ are similar when A is a square
matrix. It is clearly enough to prove this when A is an elementary Jordan block,
and in that case one sees that for P := (δn+1−i,j) one has P−1AP = Aτ .

Now recall the well-known results that similar matrices have the same character-
istic polynomial and the same minimal polynomial15. The corollary is now immediate
from Proposition 2.1(c) (or (d)). q.e.d.

The value v∗(v) of a linear functional v∗ ∈ V ∗ on a vector v ∈ V is often more
conveniently expressed as 〈v, v∗〉, i.e.,

(2.4) 〈v, v∗〉 := v∗(v).

The relationship between T : V → V and the dual operator can then be written

(2.5) 〈Tv, v∗〉 = 〈v, T ∗v∗〉,

whereupon by induction one immediately sees that

(2.6) 〈T kv, v∗〉 = 〈v, (T ∗)kv∗〉, k = 1, 2, 3, . . . .

15See, e.g., [M-B, Chapter IX, §5, Theorem 11, p. 312 and §2, Corollary 2, p. 314].
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Second Proof of Proposition 2.3 :

⇒ : Let e1 ∈ V be cyclic w.r.t. T and let e = (ej)
n
j=1 be the corresponding basis

of V , i.e., ej := T j−1e1 for j = 1, 2 . . . , n. Denote the dual basis of V ∗ by (e∗)n
j=1.

Then for any 1 ≤ i, j ≤ n we have

〈ei, T
∗e∗j〉 = 〈Tei, e

∗
j〉

= 〈ei+1, e
∗
j〉

= δi+1,j

= δi,j−1

= 〈ei, e
∗
j−1〉 ,

from which we see16 that T ∗e∗j = e∗j−1. The vector e∗n is therefore cyclic for T ∗.

⇐ The argument is completely analogous to that for the forward implication.

q.e.d.

Now suppose, until the end of the proof of Proposition 2.7, that K is a differential
field with derivation δ : k ∈ K 7→ k ′ ∈ K, W is an n-dimensional K-space, and
D̂ : W → W is a differential structure on W . A vector w ∈ W is cyclic w.r.t. D̂ if
w, D̂w, D̂2w, . . . , D̂n−1w is a basis of W . D̂ is cyclic when such a vector exists.

Proposition 2.7 : A differential structure D : V → V is cyclic if and only if the
dual structure D∗ : V ∗ → V ∗ is cyclic.

The dual structure D∗ was defined in (1.22).

Proof :

⇒ For the proof it is useful to express the Lagrange identity (1.23) in the form

(i) 〈v, D∗v∗〉 = 〈v, v∗〉 ′ − 〈Dv, v∗〉.
Let e1 be cyclic for D, let (ei := Di−1e1)

n
i=1 be the corresponding basis, and let

(e∗j)
n
j=1 be the dual basis of V ∗. Then for any 1 ≤ i, j ≤ n we see from (i) that

〈ei, D
∗e∗j〉 = 〈ei, ej〉 ′ − 〈Dei, e

∗
j〉

= δ ′ij − 〈ei+1, e
∗
j〉

= 0− δi+1,j

= −δi,j−1

= 〈ei,−e∗j−1〉 ,
16From the fact that that a linear functional (or, for that matter, any linear transformation) is

completely determined by its values on a basis.
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and as a result that D∗e∗j = −e∗j−1. The vector e∗n is therefore cyclic for D∗.

⇐ The argument is completely analogous to that for the forward implication.

q.e.d.

We now return to the purely linear algebraic context. We will show that the
existence of one cyclic vector for a linear operator implies the existence of many
more17. We formulate the result assuming K = R, so as to be able to introduce
the norm topology, but readers familiar with algebraic geometry will immediately see
from the proof that the result holds for any K when Zariski topology is assumed on
V .

Proposition 2.8 : Assume K = R and endow V with the norm topology18. Then
the following assertions are equivalent:

(a) T is cyclic; and

(b) the collection of cyclic vectors for T forms a dense open subset of V .

Proof :

(a) ⇒ (b): Choose any basis e = (ej)
n
j=1 of V and let A denote the e-matrix

of T . For any v =
∑n

j=1 kjej let ve denote the column vector19 [k1 k2 · · · kn]τ .
Then v is cyclic if and only if

det(
[
ve Ave · · · An−1ve

]
) 6= 0.

Now simply observe that the hypersurface of Rn ' V where the polynomial function

x = (x1, x2, . . . , xn) ∈ Rn ' V 7→ det(
[
xτ Axτ · · · An−1xτ

]
)

vanishes is a closed nowhere dense subset.

(b) ⇒ (a) : Obvious.

q.e.d.

17The analogous result holds for differential structures, but will not be established here. See, e.g.,
[C-K].

18By the finite-dimensionality assumption there is only one such topology.
19The tau (i.e., τ) denotes transposition.
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A K-linear operator S : V → V is20 equivalent to T if there is a K-linear
isomorphism Q : V → V such that S = Q−1 ◦ T ◦Q. For example, let S, T and Q
be the linear operators on R2 with usual basis matrices

mS :=

[
6 8

−4 −6

]
, mT :=

[
2 0

0 −2

]
and mQ :=

[
1 1

1 2

]
respectively. Then one sees directly from mS := mQ−1 ·mT ·mQ that S and T are
equivalent. Note that:

• equivalent linear operators have the same characteristic polynomial; that

• if S is a linear operator on V which is equivalent to T , then T admits a cyclic
vector if and only if this is the case for S. (Indeed, v ∈ V is cyclic for T if
and only if Q−1v is cyclic for S.); and that

• “equivalence” is an equivalence relation.

Corollary 2.9 : Suppose T admits a cyclic vector, S : V → V is a K-linear
operator with the same property21, and T and S have the same characteristic poly-
nomial. Then T and S are equivalent.

Proof : By Proposition 2.1 there are (ordered) bases e = (ej)
n
j=1 and ê = (êj)

n
j=1

of V such that the e and ê-matrices of T and S are the companion matrices of
the associated characteristic polynomials; hence are identical by hypothesis. The K-
linear mapping Q : V → V uniquely determined by assigning ej to êj will then be
an equivalence as asserted. q.e.d.

Corollary 2.10 : A bijective correspondence between equivalence classes [L] of K-
linear operators L : V → V admitting cyclic vectors and monic degree n polynomials
in K[x] is well-defined by assigning [L] to the characteristic polynomial of L.

Suppose L ⊃ K is a field extension. Then an L-vector space structure is well-
defined on the tensor product L⊗K V by ` · (m⊗ v) := (`m)⊗ v for any `, m ∈ L
and any v ∈ V , and an L-linear operator TL : L⊗K V → L⊗K V is then given by

(2.11) TL := idL ⊗K T, i.e., TL :
∑

j `j ⊗ vj 7→
∑

j `j ⊗ Tvj.

20One is tempted to say “similar” rather than “equivalent,” but similarity is generally associated
with matrices rather than with linear operators.

21The cyclic vector for S need not be the same as that for T .
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One regards V as a K-subspace of L ⊗K V by means of the embedding v ∈ V 7→
1⊗ v ∈ L⊗K V . In particular, for any such v one makes the identifications

(2.12) Tv ' 1⊗ Tv = (id⊗ T )(1⊗ v) = TL(1⊗ v) ' TLv,

and thereby views T as the restriction of TL to V or, equivalently, TL as an
extension of T to L ⊗K V . If W is an L-space isomorphic to L ⊗K V , and if
U : W → W is a linear operator equivalent to TL in the sense that the diagram

(2.13)

W
U−→ W

' | | '

VL
TL−→ VL

commutes, then one says that T ascends to U and that U descends to T . The
ascension process is often described as extending the base, which might be better
described in this context as “extending the base field from K to L.”

Proposition 2.14 : Assuming the notation of the previous paragraph, the following
assertions hold.

(a) Any basis e = (ej)
n
j=1 of V over K can be considered as a basis for L⊗K V

over L by means of the embedding v 7→ 1⊗ v. In particular,

(i) dimL(L⊗K V ) = dimK(V ).

(b) Let e be a basis of V and let A be the e-matrix of T . Then A is also the
e-matrix of TL when e is regarded (as in (a)) as a basis of L⊗K V .

(c) T and TL have the same characteristic polynomial, i.e., when both are consid-
ered as polynomials in L[x] one has charT,K(x) = charTL,L(x).

(d) T and TL have the same rational form.

(e) T is cyclic if and only if TL is cyclic.

Proof :

(a) This is standard. See, e.g., [M-B, Chapter IX, §8, Proposition 16, p. 322] for
a more general result.

(b) The e-matrix of T is A = (aij), where

Tej =
∑

i aijei, j = 1, 2, . . . , n.
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Using the identifications surrounding (2.12) we therefore have

TL(1⊗ ej) = 1⊗ Tej = 1⊗
∑

i aijei =
∑

i(aij ⊗ ei) =
∑

i aij(1⊗ ei),

and the result follows.

(c) Immediate from (b), since the characteristic polynomial can be computed
using any matrix representation of T .

(d) Since the rational form of T is unique, and since any matrix with entries in
K is also a matrix with entries in L, it follows from (b) that the rational form for
T must be the rational form for TL.

(e) Since the cyclic property can be determined from the rational form, this follows
from (d).

q.e.d.
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3. Preliminaries on Diagonalizability

Again T : V → V denotes a K-linear operator.

A subspace U of a K-space Y will be called non-trivial if the inclusion U ⊂ Y
is proper and U 6= 0.

A subspace W ⊂ V is T -invariant if T (W ) ⊂ W .

Lemma 3.1 : When W ⊂ V is a non-trivial T -invariant subspace the minimal
polynomial in K[x] of T |W divides the minimal polynomial in K[x] of T .

Proof : Let m,mW ∈ K[x] denote the minimal polynomials of T and T |W re-
spectively; mW 6= 0 by the non-triviality assumption on W . From m(T ) = 0 we
have m(T )|W = 0, from T -invariance we have m(T )|W = m(T |W ), and m(T |W ) = 0
follows. Since mW (T |W ) also vanishes, and since mW generates the principal ideal
of K[x] consisting of those polynomials vanishing on T |W , the result follows. q.e.d.

The operator T is:

• reducible if there is a non-trivial T -invariant subspace;

• irreducible if it is not reducible;

• completely reducible if V is the direct sum of non-trivial T -invariant irreducible
subspaces.

Theorem 3.2 : The following assertions are equivalent:

(a) T is irreducible;

(b) T is cyclic and the minimal polynomial in K[x] of T is irreducible; and

(c) the minimal polynomial in K[x] of T is irreducible of degree n.

Proof :

(a) ⇔ (b) : See, e.g., [J, Chapter III, §7, Theorem 3, p. 128].

(b) ⇔ (c) : By Proposition 2.1(d).

q.e.d.
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Theorem 3.3 : The following assertions are equivalent:

(a) T is completely reducible; and

(b) the minimal polynomial in K[x] of T is a product of distinct irreducible poly-
nomials in K[x].

Proof : See, e.g., [J, Chapter III, §7, Theorem 5, p. 129]. q.e.d.

The operator T is diagonalizable if there is a basis e of V such that the e-matrix
of T is diagonal.

Corollary 3.4 : The following assertions are equivalent:

(a) T is diagonalizable; and

(b) the minimal polynomial in K[x] of T factors into distinct monic linear poly-
nomials in K[x].

Proof :

(a) ⇒ (b) : Diagonalizability obviously implies complete reducibility, hence by
Theorem 3.3 the minimal polynomial must be a product of distinct irreducible poly-
nomials. On the other hand, by direct calculation using the diagonal matrix form the
characteristic polynomial is seen to be a product of monic linear polynomials. Since
the minimal polynomial divides the characteristic polynomial, (b) follows.

(b)⇒ (a) : By Theorem 3.3 T is completely reducible, i.e., V = V1⊕V2⊕· · ·⊕Vt,
where each Vj is T -invariant and irreducible w.r.t. T |Vj

. Fix any such j. Then
by Theorem 3.2 the minimal polynomial in K[x] of T |Vj

must be irreducible. By
Lemma 3.1 that polynomial must divide the minimal polynomial of T , hence must be
linear by the factorization hypothesis. Proposition 2.1(d) then gives dimK(Vj) = 1,
and (a) follows.

q.e.d.

Corollary 3.5 : Suppose L ⊃ K is an extension of fields and TL : L ⊗K V →
L⊗K V is the unique L-linear operator extending T . Then the following statements
are equivalent:

(a) L⊗K V admits a basis consisting of eigenvectors of TL;

(b) TL is diagonalizable; and

37



(c) the minimal polynomial in K[x] of T is separable, and L contains a complete
set of roots of this polynomial.

Moreover, if T is cyclic one can augment this list of equivalent statements with the
following :

(d) the characteristic polynomial of T is separable, and L contains a complete set
of eigenvalues of T .

By the “eigenvalues of T ” we mean those of T in K together with those of TL

in L \K.

Proof :

(a) ⇔ (b) : Obvious.

(b) ⇒ (c) : By Corollary 3.4 (with K in that statement replaced by L) the
minimal polynomial of TL factors into distinct monic linear polynomials in L[x],
and (b) follows easily.

(c) ⇒ (b) : By Proposition 2.14 and Corollary 3.4 (with K in that statement
again replaced by L).

(c) ⇔ (d) : By Proposition 2.1(c).

q.e.d.

We offer a simple example to illustrate how this last corollary might be used in
practice.

Example 3.6 : Let K = Q, V = Q4, and let T : V → V be the Q-linear

operator with usual basis matrix A :=


0 0 0 −9

1 0 0 6

0 1 0 −10

0 0 1 6

 . Since this matrix is in

rational form we conclude from Proposition 2.1 that T is cyclic. However, the
characteristic polynomial is charT (x) = x4 − 6x3 + 10x2 − 6x + 9, which factors in
Q[x] as (x2 +1)(x−3)2, and is therefore not separable. It follows from Corollary 3.5
that TL : L⊗Q V → L⊗Q V cannot be diagonalized for any choice of field extension
L ⊃ Q.
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4. Galois Extensions

Throughout this section we assume T admits a cyclic vector.

We now offer a definition of a Galois extension for a linear operator in the spirit
of our definition of a Picard-Vessiot extension for a differential structure (see the
paragraph immediately after that surrounding (1.29)).

A field extension L ⊃ K is a Galois extension for T if:

(I) the extension is normal;

(II) the L-space L⊗K V admits a basis consisting of eigenvectors of TL ; and

(III) when M ⊃ K is any other field extension satisfying (a) and (b) there is a
field embedding φ : L → M over K.

The presentation of examples is simplified by first working out an equivalent def-
inition (see Theorem 4.3).

A linear operator S : V → V is separable if the characteristic polynomial
charS,K(x) ∈ K[x] has this property.

Proposition 4.1 : Any separable linear operator on V is cyclic.

The converse is false: see, e.g., Example 3.6.

Proof : When S : V → V be a linear operator any root of the characteristic poly-
nomial charS,K(x) is also a root of the minimal polynomial minS,K(x) (see, e.g., [N,
Chapter 7, §2, Theorem 7.6, p. 190]). Under the given hypothesis charS,K(x) has pre-
cisely n roots, all distinct; since deg(minS,K(x)) ≤ n, this forces deg(minS,K(x)) =
n. The result is then immediate from Proposition 2.1(d). q.e.d.
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Proposition 4.2 : When L ⊃ K is an extension of fields condition (II) in the
definition of a Galois extension is equivalent to the following two assertions:

(a) T is separable; and

(b) L contains a complete set of eigenvalues of T .

Moreover, (a) and (b) are, in turn, equivalent to:

(c) there is a basis e of L⊗K V such that the e-matrix of TL is diagonal, say

(i)



λ1 0 0 · · · 0

0 λ2 0 0

0 0 λ3
. . .

...

...
. . . 0

0 0 · · · 0 λn


,

Proof : The equivalence of (a) and (b) with (II) was established in Corollary 3.5.
The equivalence of (a) and (b) with (c) is obvious. q.e.d.

Theorem 4.3 : Suppose T is separable and L ⊃ K is a field extension. Then the
following statements are equivalent.

(a) L ⊃ K is a Galois extension for T .

(b) L ⊃ K is a classical Galois extension for the characteristic polynomial of T .

Proof :

(a) ⇒ (b) : By Proposition 4.2 the field L contains a complete set of eigenvalues
for T , and therefore a splitting field M for p := charT,K(x). The extension M ⊃ K
is then a classical Galois extension for the separable polynomial p, and to establish
(b) it suffices to prove that M = L. The field extension M ⊃ K obviously satisfies
(II) of the definition of a Galois extension, since it contains a full set of eigenvalues
of T , and it satisfies (I) by definition. By (III) there must be a field embedding
φ : L → M over K. Since L ⊃ K is normal, φ must be an automorphism, hence
L = φ(L) ⊂ M ⊂ L, and M = L follows.

(b) ⇒ (a) : Only (III) requires proof, so assume M ⊃ K satisfies (I) and (II).
Then, as above, M ⊃ K must contain a classical Galois extension N ⊃ K for p.
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But any two classical Galois extensions for p are isomorphic over K (see, e.g., [Lang,
Chapter V, §3, Theorem 3.1, p. 236]), and (III) follows. q.e.d.

Note that in the statement of Theorem 4.3 the characteristic polynomial
charT,K(x) ∈ K[x] of T is not assumed irreducible, e.g., some or all of the roots
might already be in K. Of course all are in K if and only if L = K.

Corollary 4.4 : Suppose T is separable and the characteristic polynomial
charT,K(x) factors in K[x] in the form q(x)

∏n
j=r+1(x − kj), with q ∈ K[x] ir-

reducible. Then any classical Galois extension L ⊃ K for q is a Galois extension
for T .

Proof : Any such extension is a classical Galois extension for charT,K(x), i.e., it
is normal, separable, and generated by the roots of this polynomial. Theorem 4.3
therefore applies. q.e.d.

Examples 4.5 : We consider the Q-linear operators T : Qn → Qn having the
indicated usual basis matrices A. (There is nothing special about Q, except that
elementary examples of classical Galois group calculations tend to focus on that field.)
The standard necessary and sufficient condition for the separability a polynomial p
with coefficients in a field K is that the discriminant

(i) ∆ :=
(∏

i<j(λi − λj)
)2

of that polynomial be non-zero, where λ1, λ2, . . . , λn are the roots, and if this is the
case for p = charT,Q(x) ∈ Q[x] then Q(λ1, λ2, . . . , λn) ⊃ Q (which could be a trivial
extension) will, by Theorem 4.3, be a Galois extension for T . We will therefore be
content to list the characteristic polynomial and the discriminant of that polynomial
in each of the cases considered.

(a) (n = 2) A =

[
0 −c
1 −b

]
, b, c ∈ Q. Here

(ii) charT,Q(x) = x2 + bx + c,

and

(iii) ∆ = b2 − 4c.
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(b) (n = 3) A =

 0 0 −d
1 0 −c
0 1 −b

 , b, c, d ∈ Q. Here

(iv) charT,Q(x) = x3 + bx2 + cx + d,

and

(v) ∆ = −27d2 − 4c2 − (4b2d− bc2 − 18cd) · b.

(c) (n = 4) A =


0 0 0 −e
1 0 0 −d
0 1 0 −c
0 0 1 −b

 , b, c, d, e ∈ Q. Here

(vi) charT,Q(x) = x4 + bx3 + cx2 + dx + e,

and

(vii)


∆ = 16c2e− 4c3d2 + 256e3 − 27d4 + 144cd23− 128c2e2

+ (18cd3 − 80c2de− 192de2) · b + (c2d2 − 4c3e + 144ce2 − 6d2e) · b2

+ (−4d3 + 18cde) · b3 − 27e2 · b4.
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5. The Galois Group

In this section T : V → is a separable (and therefore cyclic) linear operator and
L ⊃ V is a Galois extension for T . We denote the L-space L⊗K V by VL.

Define the Galois group of T to be the automorphism group over K of the
Galois extension L ⊃ K for T , i.e., the group of automorphisms of L which fix
K pointwise. In view of Theorem 4.3 this automorphism group coincides with the
classical Galois group of the characteristic polynomial of T . Denote the action of G
on L (by evaluation) by g · `, i.e., let g · ` := g(`) for any (g, `) ∈ G× L.

Define a representation ρ : G → GL(VL, L), which we often express as an action,
by

(5.1) ρ(g)(`⊗ v) = g · (`⊗ v) := (g · `)⊗ v, `⊗ v ∈ L⊗K V.

Now extend T to TL : VL → VL as in (2.11), and recall that TL is uniquely
determined by the property

(5.2) TL(`⊗ v) := `⊗ Tv, `⊗ v ∈ L⊗K V.

The basic relation between the extension TL and the representation ρ is that
they “commute.” Specifically, one has the following analogue of Proposition 1.31.

Theorem 5.3 : For any g ∈ G one has

(i) ρ(g) ◦ TL = TL ◦ ρ(g).

In fancier language: TL is equivariant w.r.t. the given G-action on VL.

Proof : For any `⊗ v ∈ VL one has

(ρ(g) ◦ TL)(`⊗ v) = g · (`⊗ Tv)

= (g · `)⊗ Tv

= TL((g · `)⊗ v)

= (TL ◦ ρ(g))(`⊗ v).

q.e.d.

We now list a few consequences of G being an automorphism group of a field.
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Proposition 5.4 : Suppose g ∈ G, `1, `2 ∈ L, v ∈ V and vL ∈ VL are arbitrary.
Then

(a) g ·
(
`1(`2 ⊗ v)

)
= (g · `1)((g · `2)⊗ v);

(b) g ·
(
`1(`2 ⊗ v)

)
= (g · `1)(g · (`2 ⊗ v)); and

(c) g · `1vL = (g · `1)(g · vL).

Proof :

(a) From (5.1) we have

g ·
(
`1(`2 ⊗ v)

)
= g · (`1`2 ⊗ v)

= (g · (`1`2))⊗ v

= g(`1`2)⊗ v

= g(`1)g(`2)⊗ v (because g is a field automorphism)

= g(`1) · (g · `2)⊗ v

= (g · `1)((g · `2)⊗ v).

(b) By (a) and (5.1).

(c) By (b) and additivity.

q.e.d.

Corollary 5.5 : Suppose (`, vL) ∈ L × VL is an eigenpair for TL. Then for any
g ∈ G the pair (g · `, g · vL) has the same property.

Less formally: G permutes eigenpairs of TL. This is the analogue for linear
operators of Corollary 1.32.

Proof : One has

(g · `)(g · vL) = g · `vL ((by Proposition 5.4(c))

= g · (TLvL) (because TLvL = `vL)

= TL(g · vL) (by Theorem 5.3).

q.e.d.

We will need two key facts about the action of G on L (by evaluation).
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Proposition 5.6 : The action of the Galois group on L permutes the eigenvalues of
T . Moreover, when the characteristic polynomial charT,K(x) ∈ K[x] is irreducible
this action on the eigenvalues is transitive, i.e., for any two distinct eigenvalues λ1, λ2

of T there is a (not necessarily unique) g ∈ G such that g · λ1 = λ2.

Proof : The first assertion is immediate from Corollary 5.5. The second is stan-
dard for the classical Galois group, e.g., see [Lang, Chapter V, §2, p. 233], and, as
previously noted, the two groups coincide. q.e.d.
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6. Fundamental Matrices

In this section T : V → V is assumed separable unless specifically stated to the con-
trary. In addition, L ⊃ K denotes a Galois extension for T , G is the correspond-
ing Galois group, and D = D(n, L) ⊂ GL(n, L) is the (multiplicative) subgroup of
invertible diagonal matrices. As in §4 we write L⊗K V as VL.

Henceforth gl(n, L) denotes the L-algebra22 of n×n matrices with entries in L,
and diagL(n) ⊂ gl(n, L) denotes the L-subalgebra of diagonal matrices.

Select a basis e for V and for the remainder of this section let A = (aij) ∈
gl(n, K) denote the e-matrix of T . Let I, or In when confusion might otherwise
result, denote the n×n identity matrix of gl(n, L), which of course is also the n×n
identity matrix of gl(n, K).

A matrix α ∈ GL(n, L) is a23 fundamental e-matrix for T if 24

(6.1) Dα := α−1Aα ∈ diagL(n).

Since Dα and A in (6.1) are similar the characteristic polynomials must be the
same. In particular,

(6.2) det(Dα) = det(A) and trace(Dα) = trace(A).

By a fundamental matrix of T we mean a fundamental e-matrix of T for some
basis e of V .

Before presenting examples of fundamental matrices we formulate two equivalent
definitions.

Let S : W → W be a linear operator on a finite-dimensional vector space W
over a field M . By an S-eigenbasis of W we mean a basis of W consisting of
eigenvectors of S. (Such a basis need not exist.) By the transition matrix 25 between
bases e = (ej)

n
j=1 and ê = (êj)

n
j=1 of W we mean the matrix P = (pij) ∈ GL(n, M)

defined by ej :=
∑

i pij êi for j = 1, 2, . . . , n.

22The notation reflects the fact that gl(n, L) is actually a Lie algebra, but we will not make use
of this added structure.

23The terminology is not standard. It is used by this author because this matrix is in many ways
the analogue of a fundamental matrix solution of a first-order system of linear differential equations,
and in that subject “fundamental matrix” is standard.

24In practice such α are easy to construct provided one has access to reasonable computer-algebra
software. One simply asks for the Jordan form of A and the matrix that conjugates A to that
form; the conjugating matrix will then be a fundamental e-matrix for T .

25This concept is certainly familiar from elementary linear algebra. We recall the definition here
to establish our notation.
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Proposition 6.3 : For any basis e = (ej)
n
j=1 of V and any n × n matrix α ∈

GL(n, L) the following assertions are equivalent.

(a) α is a fundamental e-matrix for T ;

(b) for j = 1, 2, . . . , n the jth-column of α is the e-column of an eigenvector of
T ; and

(c) α is the transition matrix from a TL-eigenbasis ê of VL to the basis e
(' (1⊗ ej)

n
j=1) of VL.

We will follow custom and refer to eigenvalues, eigenvectors, and eigenpairs of TL

as eigenvalues, eigenvectors and eigenpairs of T .

Proof :

(a) ⇒ (b) : For j = 1, 2, . . . , n let αj denote column j of α and write Dα in
(6.1) as diagL(λ1, λ2, . . . , λj). Then the equivalent formulation Aα = αDα of (6.1)
is in turn equivalent to

(i) Aαj = λjαj for j = 1, 2, . . . , n.

(b) ⇒ (c) : If for j = 1, 2, . . . , n we set êj :=
∑

ij αijei, then α is (by definition)
the the transition matrix from the basis ê to the basis e, and ê is a TL-eigenbasis
of VL since (i) is then equivalent to

(ii) TLêj = λj êj for j = 1, 2, . . . , n.

(c) ⇒ (a) : If (c) holds then (ii) ⇔ (i) ⇔ Aα = αDα ⇔ (6.1).

q.e.d.

Examples 6.4 :

(a) Let T : Q3 → Q3 be the R-linear mapping defined relative to the usual basis

e by the matrix A :=

 5 7 7

−2 1 −2

2 −3 0

. The characteristic polynomial is

x3 − 6x2 − x − 30 = (x − 5)(x − 2)(x + 2), and T is therefore separable. For

α :=

 −1 0 1

0 1 −1

1 −1 1

 one verifies that α−1Aα is diagonal, and α is therefore

a fundamental e-matrix for T .
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To illustrate that fundamental matrices are not unique note that β := 7 0 −5

−7 6 0

7 −6 5

 is also a fundamental e-matrix for T . Also note that Dα :=

α−1Aα = diag[−2, 3, 5] and Dβ := β−1Aβ = diag[5.3. − 2] are not the same
diagonal matrix.

Finally, observe that α−1β =

 0 0 5

0 6 0

7 0 0

 is not a fundamental e-matrix for

T ; one has (α−1β)−1A(α−1β) =

 0 −18
7

10
7

−7
3

1 −5
3

49
5

42
5

5

, which is certainly not

diagonal. The analogue of Theorem 1.38(b) is therefore false for separable
linear operators.

(b) When K = R or C the previous example generalizes as follows. Any n × n
matrix A with entries in K is the usual basis matrix of a K-linear mapping
T : Kn → Kn, and26 we can always produce an n × n matrix α ∈ GL(n, K)
which conjugates A to Jordan form. However, if T is separable that Jordan
form must be diagonal, and it is then obvious from (6.1) that α will be a
fundamental usual basis matrix for T .

(c) When the e-matrix A is in rational form there is a straightforward way to
write down a fundamental e-matrix for any separable T . To see the method
recall the n “elementary symmetric functions” sj(z) = sj(z1, z2, . . . , zn) in
n-variables z1, z2, . . . , zn, i.e.,

(i)



s1(z) := z1 + z2 + · · ·+ zn

s2(z) := z1z2 + · · ·+ z1zn + z2z3 + · · ·+ zn−1zn

...
sk(z) := the sum of all products of k distinct zj

...
sn(z) := z1z2 . . . zn.

26Recall Footnote 24.
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These polynomials can also be defined, up to sign, as the coefficients of the var-
ious powers of x in the polynomial

∏n
j=1(x− zj) ∈ Z[z1, x2, . . . , zn][x]. Indeed,

one sees easily that

(ii)∏n
j=1(x− zj) = xn − (z1 + z2 + · · ·+ zn)xn−1

+ (z1z2 + z1z3 + · · ·+ zn−1zn)xn−2 − · · ·+ (−1)nz1z2 · · · zn

= xn − s1(z)xn−1 + s2(z)xn−2 − · · ·
+ (−1)ksk(z)xk + · · ·+ (−1)nsn(z).

From (ii) above, together with (ii) of Proposition 2.1 and the uniqueness of
the rational form, one concludes that when T has eigenvalues λ1, λ2, . . . , λn

the matrix A must have the form

(iii) A :=



0 0 · · · 0 (−1)n+1sn(λ)

1 0 0 (−1)nsn−1(λ)

0 1
...

... −s2(λ)

0 · · · 1 s1(λ)


, wherein sk(λ) := sk(λ1, . . . , λn).

To write down a fundamental e-matrix for T we must first exhibit an eigen-
vector for each λj, and to this end the following observation proves useful.
Suppose 1 ≤ j, k ≤ n and we set zj = 0 in sk(z). The result, which we denote
by sk,j(z), consists precisely of those terms in sk(z) which do not involve zj. If
we then multiply that result by zj we obtain all those terms of sk+1(z) which
do involve zj, i.e., sk+1(z)− sk+1,j(z), and we must therefore have

(iv) zj · sk,j(z) = sk+1(z)− sk+1,j(z),

by which we mean

(v) zj · sn−1,j(z) = sn(z)

when k = n− 1.
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We claim that



0 0 · · · 0 (−1)n+1sn(λ)

1 0 0 (−1)nsn−1(λ)

0 1
...

... −s2(λ)

0 · · · 1 s1(λ)





(−1)n+1sn−1,j(λ)

(−1)nsn−2,j(λ)

...

(−1)k+2sk,j(λ)

...

(−1)3s1,j(λ)

(−1)2


= λj



(−1)n+1sn−1,j(λ)

(−1)nsn−2,j(λ)

...

(−1)k+2sk,j(λ)

...

(−1)3s1,j(λ)

(−1)2


,

hence that
∑n−1

k=1(−1)k+2sk,j(λ)ek + en is an eigenvector of T with associated
eigenvalue λj. Indeed, the top (column) entry in the matrix product on the left
is λk ·(−1)n+1sn−1,j(λ) by (v), the bottom entry is −s1,j(λ)+s1(λ) = λj, both
precisely as needed. Intermediate entry k is given by (−1)k(sk,j(λ) − sk(λ)),
which by (iv) can be written λj · (−1)k+1sk−1,j(λ), and the claim is thereby
established.

Since the eigenvalues are distinct (by separability) these eigenvectors must form
a basis, and we conclude that

(vi) α :=



(−1)n−1sn−1,1(λ) (−1)n−1sn−1,2(λ) · · · (−1)n−1sn−1,n(λ)

(−1)n−2sn−2,1(λ) (−1)n−2sn−2,2(λ) · · · (−1)n−2sn−2,n(λ)

...
...

...

(−1)ksk,1(λ) (−1)ksk,2(λ) · · · (−1)ksk,n(λ)

...
...

...

−s1,1(λ) −s1,2(λ) · · · −s1,n(λ)

1 1 · · · 1


is a fundamental e-matrix for T . In more compact form:

(vii) α = (αij), where αij :=

{
(−1)n−isn−i,j(λ) if 1 ≤ i < n

1 if i = n.

For later reference we list the matrices (vii) corresponding to the case n = 2, 3
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and 4:

(viii)



(a) (n = 2) α2 =

[
−λ2 −λ1

1 1

]
;

(b) (n = 3) α3 =

 λ2λ3 λ1λ3 λ1λ2

−λ2 − λ3 −λ1 − λ3 −λ1 − λ2

1 1 1

 ;

(c) (n = 4)

α4 =


−λ2λ3λ4 −λ1λ3λ4 −λ1λ2λ4 −λ1λ2λ3

λ2λ3 + λ2λ4 + λ3λ4 λ1λ3 + λ1λ4 + λ3λ4 λ1λ2 + λ1λ4 + λ2λ4 λ1λ2 + λ1λ3 + λ2λ3

−λ2 − λ3 − λ4 −λ1 − λ3 − λ4 −λ1 − λ2 − λ4 −λ1 − λ2 − λ3

1 1 1 1

.

There is an alternate method for proving the non-singularity of α; it involves
a bit more work, but one is rewarded by a more interesting result. Specifically,
we claim that

(ix) det(α) =
∏n

i<j(λi − λj),

hence that the square of this determinant is the discriminant ∆ of the charac-
teristic polynomial of T .

More generally, we claim that for
(x)

α(n, z(n)) :=



(−1)n−1sn−1,1(z) (−1)n−1sn−1,2(z) · · · (−1)n−1sn−1,n(z)

(−1)n−2sn−2,1(z) (−1)n−2sn−2,2(z) · · · (−1)n−2sn−2,n(z)

...
...

...

(−1)ksk,1(z) (−1)ksk,2(z) · · · (−1)ksk,n(z)

...
...

...

−s1,1(z) −s1,2(z) · · · −s1,n(z)

1 1 · · · 1


,

where n ≥ 2 is arbitrary and z = z(n) = (z1, z2, . . . , zn), one has

(xi) det(α(n, z(n))) =
∏n

i<j(zi − zj),
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We argue by induction on n ≥ 2, immediately dispensing with the case n = 2
by direct calculation. We therefore assume n > 2, and that the result holds for
all integers m satisfying 2 ≤ m < n.

Fix 1 ≤ j < n and subtract column n from column j in (x). The result for
the bottom entry will be 0, whereas for 1 ≤ k < n the result for the entry
with initial subscript k will be

(xii) (−1)k
(
sk,j(z(n))− sk,n(z(n))

)
.

The terms of sk,j(z(n)) and sk,n(z(n)) not involving either zj or zn will cancel
in pairs. Since there are no terms in sk,j(z(n)) involving zj, and none in
sn,j(z(n)) involving zn, the remaining terms can also be paired: if t is a term
of sk,j(z(n)) involving zn, then zj ·t/zn can be designated as the corresponding
term of sn,j(z(n)), and the procedure can obviously be reversed. Since t/zn

is a term of sk−1,j(z(n − 1))) one sees that (xii) simplifies by means of these
pairings to

(−1)k(xn − xj)sk−1,j(z(n− 1)) = (zj − zn) · (−1)k−1sk−1,j(z(n− 1)),

and by factoring (zj − zn) out of column j for 1 ≤ j < n the determinant
calculation in (x) is reduced to

∏
1≤j<n

(zj−zn)·det



(−1)n−2sn−2,1(z) (−1)n−2sn−2,2(z) · · · (−1)n−1sn−1,n(z)

(−1)n−3sn−3,1(z) (−1)n−3sn−3,2(z) · · · (−1)n−2sn−2,n(z)

...
...

...

(−1)k−1sk−1,1(z) (−1)k−1sk−1,2(z) · · · (−1)ksk,n(z)

...
...

...

−1 −1 · · · −s1,n(z)

0 0 · · · 1


,

where in all but (possibly) the final column z = z(n − 1) := (z1, z2, . . . , zn−1).
Expanding the final determinant along the bottom row results in a value of
(−1)2n det(α(n − 1, z(n − 1)). By induction we have det(α(n − 1, z(n − 1)) =∏

1≤i<j<n(zi − zj), and the full determinant is therefore∏
1≤j<n(zj − zn) ·

∏
1≤i<j<n(zi − zj) =

∏
1≤i<j≤n(zi − zj).

Equality (xi) is thereby established, and (ix) follows immediately.
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One can significantly improve the results of Example 6.4(c) by choosing a cyclic
vector for the dual operator T ∗ and using the dual of the resulting basis as the basis
for V . One then obtains striking analogues of Proposition 1.39 and Corollary 1.41.

Proposition 6.5 : The following statements are equivalent, even without the stand-
ing assumption in this section that T be separable.

(a) T ∗ : V ∗ → V ∗ admits a cyclic vector.

(b) There is a basis e of V such that the e-matrix of T has the form

(i) A =



0 1 0 · · · 0

0 0 1
. . .

...

...
. . . 0

0 0 · · · 0 1

−a0 −a1 · · · −an−2 −an−1


,

i.e., A is the transpose of the unique rational form of T ∗.

Moreover, either (and therefore both) of these conditions holds when the separability
hypothesis on T is reimposed.

Proof : Let e be a basis for V and let e∗ be the dual basis of V ∗. Since (V ∗)∗ ' V ,
we can (and do) regard e as the dual basis of e∗. As we have seen previously, the
e-matrix for T is M if and only if the e∗-matrix of T ∗ is M τ . However, for A as
in (i) we have

Aτ =



0 0 0 · · · 0 −a0

1 0 0 · · · 0 −a1

0 1 0 · · · 0 −a2

...
. . . . . . . . .

...

0 · · · 0 1 0 −an−2

0 · · · 0 0 1 −an−1


,

which is precisely of the form associated with (a basis generated by) a cyclic vector
(recall Proposition 2.1). q.e.d.

We now re-institute the separability hypothesis on T .
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Corollary 6.6 : There is a(n ordered) basis e of V such that the e-matrix of T
has the form seen in (i) of Proposition 6.5. In fact one can take e = (ej)

n
j=1, where

ê = (en+1−j)
n
j=1 is any basis for which the ê-matrix of T is in rational form.

In specific examples involving not-too-large matrices the standard computer alge-
bra systems can easily produce such matrices.

Proof : For the initial assertion recall Proposition 2.3. The second assertion is a
basis reformulation of the first proof of Proposition 2.3. q.e.d.

Proposition 6.7 : Let `1, `2, . . . , `n ∈ L be a complete set of eigenvalues of T ,
set ` := (`1, `2, . . . , `n) ∈ Ln, and let e be a basis of V as in the statement
of Corollary 6.6, i.e., such that the e-matrix of T has the form seen in (i) of
Proposition 6.5. Then an n × n matrix α ∈ GL(n, L) is a fundamental e-matrix
of T if and only if α can be expressed as α = vdmmK[x],n(`) · D, where D ∈
GL(n, L) is a diagonal matrix.

Proof : The condition for α = (αij) ∈ G(n, L) to be a fundamental matrix of T
is (by definition) that α−1Aα be diagonal, say diag[d1, d2, . . . , dn]. For purposes of
this proof it is more convenient to write this condition as

(i) A(αij) = (αij) · diag[d1, d2, . . . , dn]

or, in full matrix form, as



0 1 0 · · · 0

0 0 1
. . .

...

...
. . . 0

0 0 · · · 0 1

−a0 −a1 · · · −an−2 −an−1





α11 α12 α13 · · · α1n

α21 α22 α23 · · · α2n

...

αn−1,1 αn−1,2 αn−1,33 · · · αn−1,n

αn1 αn2 αn3 · · · αnn



=



α11 α12 α13 · · · α1n

α21 α22 α23 · · · α2n

...

αn−1,1 αn−1,2 αn−1,33 · · · αn−1,n

αn1 αn2 αn3 · · · αnn





d1 0 0 · · · 0

0 d2 0 · · · 0

...
. . . . . . . . .

...

0 · · · 0 dn−1 0

0 0 · · · 0 dn


.
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Fix 1 ≤ j ≤ n. Equality (i) obviously holds if and only if jth-columns of the upper
and lower products displayed above are equal, and α is therefore a fundamental
e-matrix for T if and only if

α2j

α3j
...

αnj

−
∑n−1

k=0 akαk+1,j

 =



djα1j

djα2j

...

djαn−1,j

djαnj


for all 1 ≤ j ≤ n.

These last conditions are, in turn, equivalent to

(ii)



(a)


α2j = djα1j

α3j = djα2j = d2
jα1j

...

αnj = djαn−1,j = dn−1
j α1j

together with

(b) djαnj +
∑n−1

k=0 akαk+1,j = 0.

Note that substituting the identities of (iia) into (iib) gives

(iii) (dn
j +

∑n−1
k=0 akd

k
j ) · α1j = 0.

For α to be fundamental we must have det(α) 6= 0, hence α1j 6= 0 in (ii) and
(iii), and we conclude that α is a fundamental e-matrix for T if and only if for each
1 ≤ j ≤ n the element dj ∈ L is a solution of xn +

∑n−1
k=0 akx

k = 0, and that α

has jth-column α1j



1

dj

d2
j

...
dn−1

j

. But this is equivalent to each dj being an eigenvalue
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of T , and to α having the form

(iv) vdmmK[x],n(k)D, where D =



α11 0 0 · · · 0

0 α12 0 · · · 0

0 0 α13
. . .

...

...
. . . . . . . . . 0

0 · · · 0 0 α1n


∈ Gl(n, L).

The proof is therefore complete. q.e.d.

We can now give the analogue for operators of Corollary 1.41.

Corollary 6.8 : Suppose `1, `2, . . . , `n ∈ L are distinct and ` := (`1, `2, . . . , `n) ∈
Ln. Then the following assertions are equivalent.

(a) The Vandermonde matrix vdmmK[x],n(`) is a fundamental matrix of T .

(b) The elements `1, `2, . . . , `n ∈ L constitute a complete set of eigenvalues of T .

Since L contains all the roots of the characteristic polynomial of T , it follows
that one can always choose a Vandermonde matrix as a fundamental matrix.

The proof is actually constructive: it shows that if one chooses a basis e such
that the e-matrix of T is the transpose of the the rational form of this operator,
then vdmmK[x],n(`) will be a fundamental e-matrix of T . If one is in possession of
a basis ê which exhibits this rational form, a basis e with the desired property can
always be constructed as in Corollary 6.6.

Proof :

(a) ⇒ (b) : Abbreviate vdmmK[x],n(`) as v.
By assumption there is a basis e of V such that v−1Av = diag[d1, d2, . . . , dn],

where dj ∈ L for j = 1, 2, . . . , n, and where A is the e-matrix of T . It is immediate
from similarity that d1, d2, . . . , dn must be a full set of eigenvalues of A. Since the
eigenvalues of A are those of T , (b) follows.

(b) ⇒ (a) : Since T is assumed separable (in this section) T must be cyclic
(Proposition 4.1), and the same therefore holds for T ∗ (Proposition 2.3). It then
follows from Proposition 6.5 that there is a basis e of V such that the e-matrix of
T has the form seen in (i) of that result, i.e., it is the transpose of the rational form
of T . Assertion (a) is now verified by choosing D = I (the identity matrix) in the
statement of Proposition 6.7.

q.e.d.
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Example 6.9 : Let T : Q4 → Q4 be the linear operator with usual basis represen-
tation

A =


6 18 62 −131

35 310 1127 −2209

0 −14 −52 99

5 37 134 −264

 .

The characteristic polynomial x4 + 2x2 − 8 has discriminant −165, 888 (according
to the computer algebra package this author is using), from which we see that T is
separable. The rational form of A is

0 0 0 8

1 0 0 0

0 1 0 −2

0 0 1 0

 ,

and transpose of this matrix will have the form needed for Proposition 6.7. When my
computer algebra package computed a matrix converting that transpose to Jordan
form the result was 

1
6

1
6

1
3

1
3

− i
3

i
3

√
2

3
−

√
2

3

−2
3

−2
3

2
3

2
3

4i
3
−4i

3
2
√

2
3

−2
√

2
3

 ,

Expressing this matrix in the form
1 1 1 1

−2i 2i
√

2 −
√

2

−4 −4 2 2

8i −8i 2
√

2 −2
√

2




1
6

0 0 0

0 1
6

0 0

0 0 1
3

0

0 0 0 1
3



= vdmmQ[x],4(−2i, 2i,
√

2,−
√

2) ·


1
6

0 0 0

0 1
6

0 0

0 0 1
3

0

0 0 0 1
3


then gives a concrete illustration of Proposition 6.7.
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7. Preliminaries on Permutation Matrices

Sn denotes the symmetric group on n letters; the identity permutation will be denoted
e. A permutation σ ∈ Sn will, when convenient, be expressed as

σ =

[
1 2 · · · n

σ(1) σ(2) · · · σ(n)

]
.

Unless specifically indicated to the contrary, e.g., by column vector notation, all ma-
trices are assumed n × n. δij denotes the Kronecker delta, and a superscript τ
indicates matrix transposition.

By a permutation matrix we mean any matrix p of the form (δiσ(j)), where
σ ∈ Sn. In other words, p must result from the identity matrix I by a permutation
of the columns. (One could also use rows, although much of what follows would need
to be changed accordingly.) To indicate the relationship to σ we write p as pσ,
hence

(7.1) pσ := (δiσ(j)).

The collection of permutation matrices, which constitutes a subset of GL(n, Z), is
denoted by Pn.

The first result of the section suggests why permutation matrices might be of
interest in our context. It is the analogue for separable operators of Theorem 1.38(a)
for differential structures.

Theorem 7.2 : Suppose T : V → V is a separable linear operator on an n-
dimensional K-space, e is a basis for V , and A is the e-matrix of T . Suppose
α and β are fundamental e-matrices for T with entries in some extension field
L ⊃ K. Then α−1β has the form dpσ, where d is a diagonal matrix with entries
in L and pσ is a permutation matrix.

Proof : By hypothesis we have both

(i) α−1Aα = `α := diag[`α
1 , `α

2 , . . . , `α
n] = (`α

i δij)

and

(ii) β−1Aβ = `β := diag[`β
1 , `

β
2 , . . . , `

β
n] = (δij`

β
j )
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(recall (6.1)), which for the purposes of this proof we express as

(iii) α`α = Aα and β`β = Aβ.

If we write α−1β as m we see from (iii) and (i) that

m`β = α−1β`β

= α−1Aβ

= α−1Aαα−1β

= `αm,

i.e., that

(iv) m`β = `αm.

Since both collections `α
i and `β

j constitute full sets of eigenvalues of T in L
there must be a permutation σ ∈ Sn such that

(v) `α
σ(j) = `β

j for j = 1, 2, . . . , n.

If we write m as (mij) we see from (ii) and (v) that the ij term on the left in (iv)
is ∑

k mikδkj`
β
j = mij`

β
j = mij`

α
σ(j) = mij`

α
σ(j)mij,

from (i) that the corresponding term on the right in (iv) is∑
k `α

i δikmkj = `α
i mij,

and we therefore have

(vi) (`α
i − `α

σ(j))mij = 0 for all 1 ≤ i, j ≤ n.

From the separability assumption the `α
i are pairwise distinct, whereupon from (vi)

and det(m) 6= 0 we conclude that mij = 0 if and only if i 6= σ(j), hence that
m = (mσ(j)jδiσ(j)) = diag[mσ(1)1, mσ(2)2, . . . ,mσ(n)n] · pσ. q.e.d.

By choosing σ in (7.1) to be the identity permutation we see that

(7.3) pe = I ∈ Pn.

We claim that

(7.4) pσ, pν ∈ Pn ⇒ pσpν = pσ◦ν ∈ Pn,
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hence that Pn is closed under (matrix) multiplication. Indeed, we have

(7.5) pσpν =
(∑

k δiσ(k)δk,ν(j)

)
,

and for any fixed 1 ≤ k ≤ n we see that

δiσ(k)δk,ν(j) =

{
1 ⇔ σ(k) = i and ν(j) = k ⇔ (σ ◦ ν)(j) = i and k = σ−1(i)
0 otherwise.

Equality (7.5) thereby reduces to pσpν = (δi,(σ◦ν)(j)) = pσ◦ν , which establishes our
claim.

By choosing ν = σ−1 in (7.4) and recalling (7.3) we see that

(7.6) pσ ∈ Pn ⇒ p−1
σ = pσ−1 ∈ Pn.

It now follows from (7.3) and (7.4) that Pn is a subgroup of GL(n, Z), which we
refer to as the group of permutation matrices.

We next observe that for pσ as in (7.1) we have

(7.7) pτ
σ = (δσ(i)j).

To see this write p = (pij) and pτ = (qij). Then

qij = pji = δjσ(i) = δσ(i)j,

and (7.7) follows.

Proposition 7.8 : For any pσ ∈ Pn one has

(i) pτ
σ


1
2
...
n

 =


σ(1)
σ(2)

...
σ(n)

 .

Moreover, the permutation matrix pσ is uniquely determined by this identity, i.e., if
p ∈ Pn satisfies

(ii) pτ


1
2
...
n

 =


σ(1)
σ(2)

...
σ(n)

 ,

then p = pσ.
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For example, suppose

σ =

[
1 2 3 4

4 2 1 3

]
,

i.e., that σ(1) = 4, σ(2) = 2, σ(3) = 1 and σ(4) = 3. Then from the two columns
appearing below one determines by inspection that

0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0




1

2

3

4

 =


4

2

1

3

 ,

hence that

pσ =


0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0

 .

Many authors prefer to replace (7.1) by pσ := (δσ(i)j), i.e., they view permutation
matrices in terms of row permutations rather than column permutations. When that
choice is made equality (ii) would more likely be expressed in the row vector form

[1 2 · · · n] pτ
α = [σ(1), σ(2), . . . , σ(n)] .

Proof : By (7.7) we see that the i1-entry of the matrix product on the left in (i) is∑
k δσ(i)kk = σ(i),

and this establishes (i).
To complete the proof note from the hypothesis p ∈ Pn that p must have the

form pν = (δiν(j)) for some permutation ν ∈ Sn. By replacing σ with ν in the
previous paragraph (ii) is seen to reduce to

ν(1)
ν(2)

...
ν(n)

 =


σ(1)
σ(2)

...
σ(n)

 ,

hence ν = σ, and p = pν = pσ follows. q.e.d.
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Proposition 7.9 :

(a) Every permutation matrix is orthogonal, i.e., Pn ⊂ O(n, Z).

(b) The mapping θ : σ ∈ Sn 7→ pσ ∈ Pn is a group isomorphism.

Proof :

(a) First note that for any 1 ≤ i, j ≤ n we have σ(i) = j ⇔ i = σ−1(j), from
which one immediately sees that δσ(i),j = δi,σ−1(j). From (7.7), (7.1) and (7.6) we
conclude that

pτ
σ = (δσ(i),j) = (δi,σ−1(j)) = pσ−1 = p−1

σ ,

and (a) follows.

(b) The mapping θ is a group homomorphism by (7.3) and (7.4). If pσ = I = pe

then σ = e by the assertion surrounding (ii) of Proposition 7.8(b), and injectivity
follows. Surjectivity is evident from the definition of a permutation matrix (see the
discussion leading to (7.1)).

q.e.d.

Proposition 7.10 : Let A be any n×n matrix with coefficients in a (commutative)
ring R (with unity). Then for any σ ∈ Sn the jth-column of the matrix Apσ is
the σ(j)th-column of A.

In other words, when we write A = [A1 A2 · · · An] in terms of columns the
corresponding expression for APσ is [Aσ(1) Aσ(2) · · · Aσ(n)]. Less formally: right
multiplication by pσ is equivalent to permuting the columns of A by σ.

Proof : If A = (aij) then from (7.1) we see that ij-entry of Apσ is
∑

k aikδkσ(j) =
aiσ(j). q.e.d.

Let R be as in Proposition 7.10. We claim that a left action of Sn on the
polynomial algebra R[x] = R[x1, x2, . . . , xn] is defined by27

(7.11) σ · p = (σ · p)(x1, x2, . . . , xn) = p(xσ(1), xσ(2), . . . , xσ(n)), (σ, p) ∈ Sn ×R[x].

Indeed, that e · p = p, where e ∈ Sn is the identity permutation and p ∈ R[x] is
arbitrary, is obvious. Now suppose ν, σ ∈ Sn and p, q ∈ R[x] are arbitrary. Then

27In this definition we are following [Lang, Chapter I, §5, p. 30]. One also sees the subscripts σ(j)
replaced by σ−1(j), e.g., as in [E, Chapter 1, §3, Example 1.1, p. 25].
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• σ·p results from p by replacing each xi with xσ(i) or, equivalently, each xσ−1(i)

with xi, and

• ν · q results from q by replacing each xj with xν(j).

By choosing q = σ · p and j = i in the last bulleted item it follows that ν · (σ · p)
results from p by replacing each xσ−1(i) with xν(i) or, equivalently, by replacing
each xi with xν(σ(i)) = x(ν◦σ)(i), which by definition is (ν ◦ σ) · p. We conclude that
ν · (σ · p) = (νσ) · p, and this establishes our claim.

Example 7.12 : Take R = Z, n = 4, p = x1 + x1x2 + x1x2x3, σ =

[
1 2 3

3 1 2

]

and ν =

[
1 2 3

1 3 2

]
. From (7.11) we obtain

σ · p = x3 + x3x1 + x3x1x2

= x3 + x1x3 + x1x2x3,

and by a second appeal to that formula, now with p replaced by σ · p, we obtain

ν · (σ · p) = x2 + x1x2 + x1x3x2

= x2 + x1x2 + x1x2x3.

On the other hand, we see from νσ (= ν ◦ σ) =

[
1 2 3

2 1 3

]
and a third appeal to

(7.11), this time with σ replaced by νσ, that

νσ · p = x2 + x1x2 + x2x1x3

= x2 + x1x2 + x1x2x3,

and we have thereby confirmed that ν · (σ · p) = νσ · p through straightforward
verification.

For any subgroup G ⊂ Sn one obtains an action of G on R[x] by restricting to
σ = g ∈ G in (7.11). A polynomial p ∈ R[x] is an invariant (of this action) of G,
or is (a ) G-invariant, if

(7.13) g · p = p for all g ∈ G.
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For our immediate purposes the most important example of a G-invariant, for any
subgroup G ⊂ Sn (including G = Sn), is the polynomial

(7.14) p =
(∏

i<j(xi − xj)
)2

∈ Z[x] = Z[x1, x2, . . . , xn].

Indeed, (7.13) is obvious from (7.11). More generally, from (7.11) we see that the
polynomial

(7.15)
√

p :=
∏

i<j(xi − xj) ∈ Z[x]

satisfies

(7.16) g · √p = ±√p for any g ∈ Sn,

from which (7.13) immediately follows. (
√

p is an example of a “semi-invariant.”)
One defines the sign of a permutation g ∈ Sn by

(7.17) sgn(g) :=

{
+1 if g · √p =

√
p

−1 if g · √p = −√p,

which immediately gives

(7.18) g · √p = sgn(g)
√

p.

Permutations g satisfying sgn(g) = 1 are even; those which satisfy sgn(g) = −1
are odd.

Readers are assumed familiar with the notion of the sign of a permutation, but
perhaps not with the approach we have taken. The following standard fact, and the
consequent definition, are also assumed familiar.

Proposition 7.19 : The function sgn : g ∈ Sn 7→ sgn(g) ∈ {1,−1} is a group ho-
momorphism from Sn onto the group of units {1,−1} of Z. The even permutations
form the kernel, and this collection is therefore a normal subgroup of Sn.

The kernel is called the alternating group (on n letters ), and is denoted An.
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Corollary 7.20 : When G is a subgroup of Sn the following statements are equiv-
alent:

(a) the polynomial
√

p is a G-invariant ; and

(b) G ⊂ An.

Proof : For g ∈ G we have g · √p =
√

p ⇔ sgn(g) = 1 ⇔ g ∈ An. q.e.d.

Proposition 7.21 : Let θ : σ ∈ Sn 7→ pσ ∈ Pn be the group isomorphism introduced
in the statement of Proposition 7.9(b). Then the diagram

(i)

Sn
θ−→ Pn

sgn

↘
det

↙
{1,−1}

of group homomorphisms is commutative. In particular, for all σ ∈ Sn one has

(ii) sgn(σ) = det(pσ).

Proof : Recall that a permutation τ ∈ Sn is a transposition if τ interchanges two
elements of {1, 2, . . . , n} and leaves all others fixed. We assume readers are (or were
at sometime) familiar with the standard fact that Sn is generated by transpositions,
i.e., that any element of σ ∈ Sn can be expressed (but not uniquely) as a finite
product

∏m
j=1 τj in which the τj are transpositions. Since θ is an isomorphism, it

follows that pσ =
∏m

j=1 pσj
. However, since sgn and det are homomorphisms we

have
sgn(σ) =

∏
j sgn(τj) and det(pσ) =

∏
j det(pτj

),

and it therefore suffices to prove (ii) when σ = τ is a transposition. But in that
case the result is obvious: the sign of any transposition τ is obviously −1, and
the corresponding permutation matrix pτ is obtained from the identity matrix by
interchanging two columns, hence has determinant −1. q.e.d.

Examples 7.22 : Although the identification θ : Sn → Pn of Proposition 7.9(b)
is completely standard, it is generally not exploited (and often not even mentioned)
in introductory treatments of the symmetric group. The following two examples
(particularly the second) indicate the flavor of a matrix approach to Sn.
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(a) n = 2 : We first list all (two!) permutations σ and the corresponding permu-
tation matrices β(σ).

the permutation σ
the corresponding

permutation matrix pσ sgn(σ) = det(pσ)

σ1 := e = id =

[
1 2

1 2

]
pσ1 = I =

[
1 0

0 1

]
+1

σ2 :=

[
1 2

2 1

]
pσ2 =

[
0 1

1 0

]
−1

It follows immediately from the second column that |P2| = |S2| = 2, hence that
P2 is cyclic, with generator pσ2 . From the third column and (ii) of Proposition
7.21 we see that the alternating group A2 can be identified with the subgroup
{I} ⊂ P2. and is therefore trivial.

(b) n = 3

the permutation σ
the corresponding

permutation matrix pσ sgn(σ) = det(pσ)

σ1 = e = id =

"
1 2 3

1 2 3

#
pσ1 = I =

2664
1 0 0

0 1 0

0 0 1

3775 +1

σ2 :=

"
1 2 3

2 3 1

#
pσ2 :=

2664
0 0 1

1 0 0

0 1 0

3775 +1

σ3 :=

"
1 2 3

3 1 2

#
pσ3 :=

2664
0 1 0

0 0 1

1 0 0

3775 +1

σ4 :=

"
1 2 3

1 3 2

#
pσ4 :=

2664
1 0 0

0 0 1

0 1 0

3775 −1

σ5 :=

"
1 2 3

3 2 1

#
pσ5 :=

2664
0 0 1

0 1 0

1 0 0

3775 −1

σ6 :=

"
1 2 3

2 1 3

#
pσ6 =

2664
0 1 0

1 0 0

0 0 1

3775 −1

Here we see from the third column that |θ(A3)| = |A3| = 3, and θ(A3) is therefore
cyclic, generated by each of pσ2 and pσ3 . Moreover, we see that A3 ⊂ S3 is the unique
subgroup of order 3. Note that each of pσ4 , pσ5 and pσ6 is of order 2, hence that
P3, and therefore S3, has three distinct subgroups of order 2. Also note, e.g., from
pσ2pσ4 = pσ6 6= pσ5 = pσ4pσ2 , that P3, and therefore S3, is not abelian.
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When n ≥ 2 the group Pn has an interesting faithful representation.

Proposition 7.23 : Assume n ≥ 2, let ζ ∈ C be a primitive nth-root of unity, and
let V = Vn denote the n × n matrix with ij-entry ζ(i−1)(j−1). Then the following
assertions hold.

(a) V = (vdmC[x],n(ζ, ζ2, . . . , ζn−1))τ . In particular, V is the transpose of a non-
singular Vandermonde matrix.

(b) V −1 is matrix 1
n
·W , where W is the matrix obtained from V by replacing

ζ with ζn−1.

(c) For any p ∈ Pn the matrix V −1pV is block diagonal with at least two blocks,
the first (i.e., that in the upper left corner) being the 1× 1 identify matrix.

(d) Let ν : gl(n, C) → gl(n−1, C) denote the mapping that removes the first row and
column from any n×n matrix M = (mij) (i.e., ν(M) is the (n−1)× (n−1)
matrix with ij-entry mi+1,j+1). Then the function κ : p ∈ Pn 7→ ν(V −1pV ) ∈
GL(n− 1, C) is a faithful determinant-preserving representation of Pn.

(e) Let θ : Sn → Pn be the group isomorphism given in the statement of Propo-
sition 7.9(b). Then the composition κ ◦ θ : Sn → GL(n − 1, C) is a faithful
representation of Sn, and for any σ ∈ Sn one has

(i) sgn(σ) = det((κ ◦ θ)(σ)).

Notice that the mapping ν : gl(n, C) → gl(n − 1, C) introduced in (d) is not a
group homomorphism.

Proof :

(a) The initial assertion is trivial to check. The non-singularity follows from
Proposition 1.9(c) and the assumption that ζ is primitive.

(b) From the assumption that ζ is a primitive root of xn − 1 = (x − 1)(xn−1 +
xn−1 + · · ·+ x + 1) = 0 we see that ζr, for every integer r, satisfies

(i)
∑n−1

k=0(ζ
r)k =

{
0 if r is not divisible by n, and

n otherwise.
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The ij-entry of the product V M is therefore∑n
k=1 ζ(i−1)(j−1)(ζn−1)(k−1)(j−1) =

∑
k(ζ

k−1)[i−1+(n−1)(j−1)]

=
∑

k(ζ
[(i−j)+n(j−1)])k

=

{
0 if i 6= j and

n otherwise.

(c) For p = pσ = (δiσ(j)) this ij-entry of pV is
∑

k δiσ(k)ζ
(σ(i)−1)(j−1) = ζ(i−1)(j−1),

and from (b) and (i) above we conclude that the ij-entry of V −1pV is

1
n
·
∑

k(ζ
n−1)(i−1)(σ(k)−1)ζ(σ(k)−1)(j−1) = 1

n
·
(∑

k(ζ
n(i−1)+(j−i))σ(k)

)
· ζn(i−1)+(j−i)

= 1
n
·
(∑

k(ζ
n(i−1)+(j−i))k

)
· ζn(i−1)+(j−i)

=

{
1 if i = j = 1, and

0 if precisely one of i and j has value 1.

(d) Immediate from (c).

(e) By (d) and Proposition 7.21.

q.e.d.

Examples 7.24 : We continue with Examples 7.22, using the same ordering and
notation.

(a) n = 2 : Here V = V2 =

[
1 1

1 −1

]
and the only two permutation matrices are

pσ1 = I and pσ2 =

[
0 1

1 0

]
. One obviously has V −1pσ1V = pσ1 =

[
1 0

0 1

]
,

and trivially verifies that V −1pσ2V =

[
1 0

0 −1

]
. The faithful determinant-

preserving representation ν : P2 → gl(1, C) ' C is therefore given (not surpris-
ingly!) by pσ1 7→ 1 and pσ2 7→ −1.

(b) n = 3 : In this case we take V = V 3 =

 1 1 1

1 λ λ2

1 λ2 λ4

, where λ := 1
2
· (−1 +

√
3i). (One could also take λ to be the conjugate of this first choice, since both
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are primitive cube roots of unity.) The following table is thereby obtained.

the permutation matrix pσ V −1pσV ν(pσ) = (κ ◦ θ)(pσ)

pσ1 =

 1 0 0

0 1 0

0 0 1


 1 0 0

0 1 0

0 0 1

 [
1 0

0 1

]

pσ2 =

 0 0 1

1 0 0

0 1 0


 1 0 0

0 λ 0

0 0 λ

 [
λ 0

0 λ

]

pσ3 =

 0 1 0

0 0 1

1 0 0


 1 0 0

0 λ 0

0 0 λ

 [
λ 0

0 λ

]

pσ4 =

 1 0 0

0 0 1

0 1 0


 1 0 0

0 0 1

0 1 0

 [
0 1

1 0

]

pσ5 =

 0 0 1

0 1 0

1 0 0


 1 0 0

0 0 λ

0 λ 0

 [
0 λ

λ 0

]

pσ6 =

 0 1 0

1 0 0

0 0 1


 1 0 0

0 0 λ

0 λ 0

 [
0 λ

λ 0

]

For this author the advantage of the final column over the others is that it
makes it much easier to determine the nature of individual pαj

. For example,

from λ2 = λ, λ
2

= λ and λ3 = λ
3

= 1 one sees that both σ2 and σ3 generate
the cyclic order-three subgroup A3 ⊂ S3, and that pσ4 , pσ5 and pσ6 each have
order two. Of course the advantages and disadvantages of particular viewpoints
depend on which is more comfortable for a given individual: others might well
prefer column one or two, or dropping representations completely and working
directly with the original permutations.
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8. Preliminaries on Semi-Direct Products

In this section groups are written multiplicatively, and the identity element of a group
G will be written as e, or as eG when confusion might otherwise result.

Let N and H be groups and let ρ : H → Aut(N) be a representation. The
action of H on N induced by ρ will be expressed by writing ρ(h)(n) as h · n. As
the reader can easily check, a group structure on the Cartesian product N ×H, with
identity (eN , eH), is given by

(8.1) (n1, h1)(n2, h2) := (n1(h1 · n2), h1h2), n1, n2 ∈ N, h1, h2 ∈ H.

When this structure is assumed N ×H is called the semi-direct product of N and
H, and is written N >CH. Verification of the following properties of this construct
are straightforward, and are left to the reader:

• The mapping ι : n ∈ N 7→ (n, eH) ∈ N >CH is a group embedding.

• The same is true of the mapping σ : h ∈ H 7→ (eN , h) ∈ N >CH.

• The projection mapping π : (n, h) ∈ N >CH 7→ h ∈ H is a group homomor-
phism.

• the sequence

(8.2) eN → N
ι−→ N >CH

π−→ H −→ eH

is split-exact: specifically, π ◦ σ = idH .

The practical consequence of the first two bulleted items is that we can (and do)
regard N and H as subgroups of N >CH. A practical consequence of the final
items is that N C N >CH, i.e., that N (when identified with ι(N)) is a normal
subgroup of this semi-direct product.

Examples 8.3 : In these examples K denotes a field.

(a) Let N = K× be the multiplicative group of K and let H be the additive group
of Z/2Z = {[0], [1]}. Then H acts on N by inversion, i.e., for [n] ∈ Z/2Z and
k ∈ K× an action is well-defined by

(i) [n] · k := k(−1)n

.

70



The product of elements (k1, g1), (k1, g2) ∈ K× >C Z/2Z, as defined in (8.1),
is then given by

(ii) (k1, [n1])(k2, [n2]) = (k1([n1] · k2), [n1 + n2]) = (k1k
(−1)n1

2 , [n1 + n2]).

with identity e := (1, [n]).

When K = C there is a simple way to formulate this semi-direct product in
matrix terms28. Specifically, we claim that the mapping

(iii) η : (k, [n]) ∈ C× >C Z/2Z 7→

[
k 0

0 k−1

][
0 i

−i 0

]n

∈ SL(2, C)

is a group embedding. Indeed, that η(e) = I = I2 ∈ SL(2, C) is obvious, and
the required multiplicative property can be seen from the identity

(iv)

[
k 0

0 k−1

][
0 i

−i 0

]n

=

[
0 i

−i 0

]n [
k(−1)n

0

0 k(−1)n+1

]
,

which is is easily established by induction for all integers n ≥ 0. Specifically,
from (ii) and (iii) one has

η((k1, [n1])(k2, [n2])) = η((k1k
(−1)n1

2 , [n1 + n2]))

=

[
k1k

(−1)n2

2 0

0 k−1
1 k

(−1)n2+1

2

][
0 i

−i 0

]n1+n2

=

[
k1 0

0 k−1
1

][
k

(−1)n1

2 0

0 k
(−1)n1+1

2

][
0 i

−i 0

]n1
[

0 i

−i 0

]n2

=

[
k1 0

0 k−1
1

][
0 i

−i 0

]n1
[

k
(−1)2n1

2 0

0 k
(−1)2n1+1

2

][
0 i

−i 0

]n2

=

[
k1 0

0 k−1
1

][
0 i

−i 0

]n1
[

k2 0

0 k−1
2

][
0 i

−i 0

]n2

= η((k1, [n1]))η((k2, [n2])).

28In fact one can replace C in this discussion by any field containing a square root of −1, e.g.,
Q(i)
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Note that (iii) can also be expressed as

η((k, [n]) =



[
k 0

0 k−1

]
if [n] = [0] ∈ Z/2Z,[

0 ki

−k−1i 0

]
if [n] = [1] ∈ Z/2Z.

It is then immediate that η is an embedding, having as image the subgroup

(v)

{[
k 0

0 k−1

]}
k∈C×

⋃ {[
0 `

−`−1 0

]}
`∈C×

⊂ SL(2, C).

(b) Let N and H be groups, and let H act on N trivially, i.e., define h · n = n
for all h ∈ H and all n ∈ N . Then (8.1) reduces to

(n1, h1)(n2, h2) = (n1n2, h1h2),

and the semi-direct product N >CH therefore coincides with the usual direct
product N×H of N and H. In particular, the notion of a semi-direct product
can be viewed as generalization of that of a direct product.

(c) Let n ≥ 1 be an integer, let D = D(n, K) ⊂ GL(n, K) denote the subgroup
of invertible diagonal matrices, and let Pn ⊂ GL(n, K) denote the group of
permutation matrices. Then Pn acts on D by conjugation, i.e., by p·d = pdp−1,
and the groups therefore admit a semi-direct product. Specifically, the product
of (d1, p1) and (d2, p2) ∈ D>CPn as defined in (8.1) is here given by

(i)
(d1, p1)(d2, p2) = (d1p1d2p

−1
1 , p1p2) = (d1d̃2, p1p2), where d̃2 := p1d2p

−1
1 ∈ D,

and the identity element e is (I, I).

There is an obvious (set-theoretic) mapping from D>CPn into GL(n, K), i.e.,

(ii) η : (d, p) ∈ D>CPn 7→ dp ∈ GL(n, K).

We claim that η is a group embedding. Indeed, that η(e) = η((I, I)) = I ∈
GL(n,K) is immediate from (ii), and for (d1, p1), (d2, p2) ∈ D>CPn and d̃2 ∈
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D as in (i) we have

η((d1, p1)(d2, p2)) = η(d1d̃2, p1p2)

= d1d̃2p1p2

= d1p1d2p
−1
1 p1p2

= d1p1d2p2

= η((d1, p1))η((d2, p2)),

thereby establishing the required group homomorphism property, and as a con-
sequence the fact that the set of all matrices of the form dp is a subgroup of
GL(n, K). To prove η is an embedding simply note that for (d1, p1), (d2, p2) ∈
D>CPn one has

η((d1, p1)) = η((d2, p2)) ⇔ d1p1 = d2p2 ⇔ d−1
2 d1 = p2p

−1
1 .

The desired equality (d1, p1) = (d2, p2) is then immediate from d−1
2 d1 ∈ D, p2p

−1
1

∈ Pn and D ∩ Pn = {I}. In summary: D>CPn can be identified with the
subgroup

(iii) DPn := {m ∈ GL(n, K) : m = dp, d ∈ D and p ∈ Pn }

of GL(n,K). When m ∈ DPn and m = dp as in (iii) we refer to dp as
the DPn-decomposition of m. This decomposition is unique (because η is
injective). The DPn-decomposition of a product d1p1 · d2p2 ∈ DPn is achieved
using the identity

(iv) d1p2d2p2 = d1(p1d2p
−1
1 )p1p2.

We note that since the projection mapping π : D>CPn → Pn of (8.2) is a
group homomorphism, the same must be true of

(v) γ := π ◦ η−1 : pd ∈ DPn 7→ p ∈ Pn.

This simple observation plays a crucial role in the next section.

When n = 2 and K = C the group DPn is quite similar to that seen in (iv)
of Example (a), except that union and the ambient set are now replaced by{[

k1 0

0 k2

]}
k1,k2∈C×

⋃ {[
0 `1

`2 0

]}
`1,`2∈C×

⊂ GL(2, C).
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(d) In the previous example one can replace D by any subgroup thereof which is
stable under the action of Pn. In particular, one can replace D by the matrix
group I := {I,−I}. In that case one sees that the image of the restriction
to I >CPn of the embedding η defined in (ii) of the previous example is the
collection of all n × n matrices Qn such that either Qn ∈ Pn or −Qn ∈ Pn,
and one thinks of the elements of this semi-direct product in terms of these
images. Assuming this identification, note that each element of I >CPn has
determinant ±1.

(e) The multiplicative order two matrix group

H :=





−1 0 · · · 0 0

0 1 0 · · · 0

0 0 1
. . .

...
...

. . . . . . 0

0 · · · 0 0 1


,



1 0 · · · 0 0

0 1 0 · · · 0

0 0 1
. . .

...
...

. . . . . . 0

0 · · · 0 0 1




acts on SL(n, K), for any field K, by conjugation. (In fact one could gener-
alize to [commutative] rings, e.g., one could take K := Z.) As should now be
evident from the preceding examples, one can identity the semi-direct product
SL(n, K) >CH with the collection of all matrices m ∈ GL(n,K) such that
det(m) = ±1. The group embedding κ ◦ θ : Sn → GL(n − 1, C) of Proposi-
tion 7.23(e) can then be described as a faithful matrix representation of Sn in
SL(n− 1, C) >CH.

Of course H isomorphic to the multiplicative group {−1, 1} and to the additive
group Z/2Z. One might therefore express the faithful representation κ ◦ θ as
κ ◦ θ : Sn → SL(2, K) >C {−1, 1} or as κ ◦ θ : Sn → SL(2, K) >C Z/2Z.
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9. Faithful Matrix Representations of the Galois

Group

We continue with the notation of §6. In particular, we assume the linear operator T
is separable. In addition, we fix a basis e for V and a fundamental e-matrix α for
T .

The action of G on L induces an action of G on the collection gl(n, L) of n×n
matrices with entries in L: for any such matrix m = (mij) and any g ∈ G define

(9.1) g ·m := (g ·mij).

Since g is a field automorphism we have

(9.2) det(g ·m) = g · det(m).

Consequence: GL(n, L) and the subgroup D = D(n,K) of invertible diagonal ma-
trices are stable under this action. Since G fixes K pointwise, gl(n, K) (⊂ gl(n, L))
is also fixed pointwise by this action.

Let diagL(n) ⊂ gl(n, L) denote the L-subalgebra of diagonal matrices. This is
also stable under the action defined in (9.1).

Proposition 9.3 : For any g ∈ G the matrix g ·α is a fundamental matrix for T .
Moreover,

(i) g ·Dα = Dg·α.

In this statement Dg·α is the analogue of the diagonal matrix Dα defined in (6.1),
i.e., it is given by

Dg·α := (g · α)−1A(g · α).

However, the suggestive inclusion of “D” in this notation is not really justified until
we know that (g ·α)−1A(g ·α) is diagonal; that is the point of the initial assertion of
the proposition.

Proof : The calculation

A(g · α) = (g · A)(g · α) (because A ∈ gl(n, K) and g fixes K)

= g · (Aα) (because g is a field automorphism)

= g · (αDα) (by (6.1))

= (g · α)(g ·Dα) (because g is a field automorphism),
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gives

g ·Dα = (g · α)−1A(g · α).

Since Dα is diagonal we see from (9.1) that the same holds for g · Dα, and the
proposition follows. q.e.d.

The non-singular matrices29

(9.4) P̂g := α−1(g · α), g ∈ G,

will play an important role in the sequel. One sees from

(9.5) g · α = αP̂g

that their introduction enables one to describe the action of G in terms of matrix
multiplication.

Proposition 9.6 : The matrices P̂g defined in (9.4) have the following properties:

(a) P̂e = I;

(b) P̂gDg·α = DαP̂g;

(c) (g · α)−1 = P̂−1
g α−1;

(d) g · α−1 = (g · α)−1;

(e) g · α−1 = P̂−1
g α−1;

(f) P̂gh = P̂g(g · P̂h);

(g) P̂−1
g = g · P̂g−1;

(h) when P̂h is fixed by g one has P̂gh = P̂gP̂h;

(i) when P̂h ∈ GL(n,K) one has P̂gh = P̂gP̂h; and

(j) det(P̂g) =
g · det(α)

det(α)
.

29α−1(g · α) denotes the product of the matrices α−1 and g · α.
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Proof :

(a) Obvious.

(b) By (6.1) one has

PgDg·α = α−1(g · α)Dg·α

= α−1A (g · α)

= α−1A α α−1 (g · α)

= Dα α−1(g · α)

= DαPg.

(c) Immediate from (9.5).

(d) I = g · I = g · (α−1α) = (g · α−1)(g · α) and, similarly, I = (g · α)(g · α−1).
The result follows.

(e) By (c) and (b).

(f) One has

αP̂gh = gh · α (by (9.5))

= g · (h · α)

= g · (αP̂h)

= (g · α)(g · P̂h)

= (αP̂g)(g · P̂h),

and the result follows.

(g) By choosing h = g−1 in (f) we see from (a) that

I = P̂e = P̂gg−1 = P̂g(g · P̂g−1),

and the result follows.

(h) Immediate from (f).

(i) Since GL(n, K) is pointwise fixed by g, this is a special case of (h).

(j) By (9.2) we have g · det(α) = det(g · α) = det(αP̂g) = det(α) det(P̂g), and
α 6= 0 since α is invertible. The equality follows.

q.e.d.
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For the remainder of the section we let D, Pn and DPn denote the subgroups of
GL(n,K) introduced in Example 8.3(c), and we let η : (d, p) ∈ D>CPn 7→ dp ∈
DPn denote the group isomorphism defined in (ii) of that example.

Proposition 9.7 : For each g ∈ G let P̂g be the matrix defined in (9.4), i.e., the
unique matrix satisfying

(i) αP̂g = g · α.

Then the following assertions hold.

(a) Each column of g · α is a scalar multiple of some column of α.

(b) P̂g ∈ DPn.

(c) P̂g ∈ D if and only if g = e (= eG).

(d) P̂g = P̂h if and only if g = h.

Proof :

(a) By Proposition 6.3(b) all columns in question are e-columns of eigenvectors
of T , and by the separability assumption on T the corresponding eigenspaces are
one-dimensional.

(b) By (a) there is a permutation matrix p̂ such that column j of (g ·α)p̂, for any
1 ≤ j ≤ n, is of the form djαj, where αj denotes the jth-column of α. By defining
d := diagL(d1, d2, . . . , dn) ∈ D we can express this in matrix form as (g · α)p̂ = αd,
and we conclude that for p := p̂−1 ∈ Pn we have P̂g = α−1(g · α) = dp ∈ DPn.

(c) ⇒ : If g 6= e then at least one eigenvalue of TL must be moved (i.e., is not
fixed) by g (because L is generated over K by these eigenvalues, and K is fixed by
G). It then follows from Corollary 5.5 and Proposition 6.3(b) that g must move
the corresponding column of α, and this contradicts the diagonal hypothesis on P̂g.

⇐ : It is obvious from (9.4) that P̂e = I ∈ D.

(d) One has

P̂g = P̂h ⇔ α−1(g · α) = α−1(h · α)

⇔ g · α = h · α
⇔ (h−1g) · α = α.

By (a) and separability (which guarantees one-dimensional eigenspaces) this last
equality holds if and only if the element h−1g ∈ G does not move any eigenvectors
of T . By Corollary 5.5 this is equivalent to h−1g = e, hence to g = h.
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q.e.d.
By Proposition 9.7(d) the mapping

(9.8) ρ̂ = ρ̂α : g ∈ G 7→ P̂g ∈ DPn

is an injection. Given the title of this section, one might expect ρ̂ to be the relevant
matrix representation. Unfortunately, one sees from Proposition 9.6(f) that it need
not be a group homomorphism. One can also see this last assertion in a more concrete
way.

Example 9.9 : Consider the linear operator T : Q2 → Q2 with usual basis matrix

A =

[
0 −4

1 0

]
. Here

α :=

[
2(1 + i) 2(1 + i)

−1 + i 1− i

]
is a fundamental matrix of A, as the reader can easily check. The splitting field of
the characteristic polynomial x2 + 4 ∈ Q[x] is Q(i) ⊂ C, from which we see that
the classical Galois group is of order 2 and is generated by the restriction to Q(i) of
complex conjugation. Denoting that particular automorphism by g one sees that

g · α =

[
2(1− i) 2(1− i)

−1− i 1 + i

]
,

and then that

P̂g = α−1(g · α) =

[
1
8
(1− i) −1

4
(1 + i)

1
8
(1− i) 1

4
(1 + i)

]
·

[
2(1− i) 2(1− i)

−1− i 1 + i

]
=

[
0 −i

−i 0

]
.

But this last matrix has order 4, whereas if ρ̂ : g ∈ G → P̂g ∈ DPn were a group
homomorphism the order would be at most 2, i.e., at most that of g.

As we will now see, the problem with ρ̂ : G → DPn not being a group
homomorphism is easily overcome by combining the group identification η : (d, p) ∈
D>CPn 7→ dp ∈ DPn introduced in (ii) of Example 8.3(c) with the group homo-
morphism

(9.10) γ = π ◦ η−1 : dp ∈ DPn 7→ p ∈ Pn

defined in (v) of that example.
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Example 9.11 : In Example 9.9 we encountered the matrix P̂g =

[
0 −i

−i 0

]
.

By (b) of Proposition 9.7 this matrix must belong to DPn, and therefore must be
uniquely expressible in the form dp, where d ∈ D and p ∈ Pn. In fact, as one sees
by inspection, that unique decomposition is

(i) P̂g =

[
−i 0

0 −i

][
0 1

1 0

]
,

from which we see that

(ii) γ(

[
0 −i

−i 0

]
) =

[
0 1

1 0

]
.

More generally, the result of evaluating γ on a matrix in DPn can be computed
simply by replacing each non-zero entry of that matrix with 1: equality (ii) of
Example 9.11 is typical.

To tie the work in this section together define ρ : G → Pn by

(9.12) ρ = ρα = γ ◦ ρ̂.

(One should keep in mind that ρ̂ = ρ̂α, i.e., that ρ̂ depends on α.) From the
preceding comment we see that, for each g ∈ G, Pg := ρ(g) can be computed

directly from P̂g = ρ̂(g) simply by replacing each non-zero entry with 1. With more

formality: express P̂g = ρ̂(g) in the (unique) DPn-decomposition form DgPg, where
Dg ∈ D and Pg ∈ Pn, and assign g to Pg. Either approach achieves the same result:

(9.13) ρ : g ∈ G 7→ Pg ∈ Pn .

Example 9.14 : For g as in Example 9.11 we see from (i) of that example that[
0 −i

−i 0

]
= P̂g = DgPg, where Dg =

[
−i 0

0 −i

]
∈ D and Pg =

[
0 1

1 0

]
∈ Pn.

Thus ρ(g) =

[
0 1

1 0

]
.

Example 9.14 suggests that one will need to compute the DPn-decomposition of
each P̂g in every application. As we now show, this can be avoided by a judicious
choice of the fundamental matrix.
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Theorem 9.15 : Assume the context of Corollary 6.8(c); in particular, choose α
as in (vii) of that example. Then for any g ∈ G the following assertions hold.

(a) The DPn-decomposition P̂g = DgPg of P̂g ∈ DPn is given by

(i) Dg = I and Pg = P̂g.

(b) If σ = σ(g) ∈ Sn is the permutation defined by

(ii) g · λj = λσ(j), j = 1, 2, . . . , n,

then

(iii) Pg = θ(σ) = pσ,

where θ : σ ∈ Sn 7→ pσ ∈ Pn is the group isomorphism of Proposition 7.9(b).
In particular, one can recover the permutation σ, and as a consequence the
permutation of the eigenvalues of T induced by g, from

(iv) P τ
g


1
2
...
n

 =


σ(1)
σ(2)

...
σ(n)

 .

The conditions given in (i) are essentially equivalent to the assertion that ρ = ρ̂.
More precisely, they guarantee that one has a commutative diagram

(v)

DPn
ρ̂

↗
G ↑

ρ

↘
Pn

in which the vertical arrow represents the mapping p ∈ Pn 7→ Ip ∈ DPn.

Proof : By Corollary 5.5 the Galois group permutes eigenpairs of T and, by def-
inition, fixes the ground field K. Since by Proposition 6.3 the columns αj of α
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are the e-columns of a TL-eigenbasis, one sees from the structure of α that g will
permute these columns according to

g · αj = ασ(j), j = 1, 2, . . . , n.

We claim that right multiplication of α by pσ achieves the same result. Indeed, from
(7.1) we have

αpσ = (
∑

k αikδkσ(j)) = (αiσ(j)),

and the claim follows. This gives g · α = αpσ, whereupon from (9.4) we see that
P̂g = α−1(g · α) = pσ = Ipσ. In view of the uniqueness of DPn-decompositions, this
establishes both (i) and (iii). For the final assertion recall Proposition 7.8. q.e.d.

We can now present our main result. It is the analogue for separable linear
operators of Theorem 1.38(c) for differential structures.

Theorem 9.16 : The mapping ρ : G → Pn defined in (9.12) is a faithful matrix
representation.

Proof : Let e ∈ G denote the identity automorphism and let I denote the n × n
identity matrix. The equalities ρ̂(e) = (I, I) and π(I, I) = I then give ρ : e 7→ I as
required. Now let g1, g2 ∈ G and write P̂gj

= Dgj
Pgj

' (Dgj
, Pgj

) ∈ D>CPn, j =
1, 2. Then

g1 · P̂g2 = g1 · (Dg2Pg2) = (g1 · Dg2)(g1 · Pg2) = (g1 · Dg2)Pg2 ,

the final equality from Proposition 9.6(i) and the fact that Pg2 ∈ GL(n,K). Since
ker(π) = D, and since g1 · Dg2 ∈ D (by (9.1)), it follows that

(i) γ(g1 · P̂g2) = Pg2 .

Using the fact that γ is a homomorphism we conclude from Proposition 9.6(f) that

ρ(g1g2) = γ(ρ̂(g1g2))

= γ(P̂g1g2)

= γ(P̂g1(g1 · P̂g2))

= γ(P̂g1) · γ(g1 · P̂g2)

= Pg1 · Pg2 (by (i))

= ρ(g1)ρ(g2),
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and the homomorphism structure of ρ is thereby verified.
To prove injectivity suppose ρ(g) = Pg = I. Since P̂g = DgPg, this gives P̂g =

Dg ∈ D, and we conclude from Proposition 9.7(c) that g = e. q.e.d.

In the following statement θ : Sn → Pn denotes the isomorphism introduced in
Proposition 7.9(b).

Corollary 9.17 : The composition β := θ−1 ◦ ρ : G → Sn is a group embedding.

In the next result the function κ : GL(n, C) → GL(n−1, C) is that introduced in
Proposition 7.23(d), and H is the order two matrix group introduced in Example
8.3(e).

Corollary 9.18 : The mapping κ ◦ ρ : G → SL(n− 1, C) >C H is a faithful matrix
representation.

Proof : View the mapping κ ◦ ρ as the sequence

G
ρ−→ Pn

θ−1

−→ Sn
κ◦θ−→ SL(n− 1, C) >CH

and recall from Example 8.3(e) that the mapping κ◦θ is a group embedding. q.e.d.

In Corollary 9.17 we have a concrete illustration of Cayley’s Theorem: every finite
group can be embedded into Sn for some positive integer n. Because the symmetric
groups Sn become so complicated with increasing n Cayley’s result is regarded for
the most part as a curiosity. In contrast, we will make use of the embedding β.

Proposition 9.19 : For any g ∈ G one has β(g) = σ, where σ ∈ Sn is defined
by

(i) g · λj = λσ(j), j = 1, 2, . . . , n.

Moreover,

(ii) Pg = pσ .

Proof : Equality (ii) is a restatement of (iii) of Theorem 9.15. To establish (i)
choose any g ∈ G and any 1 ≤ j ≤ n. Then

β(g)(j) = θ−1(ρ(g))(j)

= θ−1(Pg)(j)

= θ−1(pσ)(j) (by (ii))

= σ(j),

and (i) is thereby established. q.e.d.
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Corollary 9.20 : Let λ1, λ2, . . . , λn denote the eigenvalues of T and let V denote
the matrix

(i) V = (vij) = (λn−i
j ).

Then for any g ∈ G one has

(ii) g · V = V pβ(g)

and, as a consequence

(iii) g · det(V ) = sgn(β(g)) det(V ).

Proof : By Proposition 9.19 one has

g · V = (g · λn−i
j )

= ((g · λj)
n−i)

= ((λσ(j))
n−i)

= (λn−i
j )

= (
∑

k λn−i
k δkσ(j))

= V pσ

= V pβ(g),

and this gives (ii).
Equality (iii) is a restatement of (7.18). q.e.d.

We are now in a position to make some quite general, but sometimes useful,
remarks about the Galois group G of T . In the statement we view G as a subgroup
of Sn by means of the embedding of Corollary 9.17.

Corollary 9.21 :

(a) |G|
∣∣n!.

(b) Let λ1, λ2, . . . , λn ∈ L denote the eigenvalues of T and let

(i)
√

∆ :=
∏

i<j(λi − λj) ∈ L.

Then G ⊂ An if and only if
√

∆ ∈ K.
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(c) G ⊂ An if and only if the discriminant ∆ of charT,K(x) ∈ K[x] is a perfect
square in K, i.e., if and only if there is an element k ∈ K such that ∆ = k2.

(d) When the characteristic polynomial charT,K(x) ∈ K[x] is irreducible it must be
the case that n

∣∣|G|.
(e) When charT,K(x) is irreducible one has both |G|

∣∣n! and n
∣∣|G|.

(f) When n = 2 and charT,K(x) is irreducible the Galois group of T is of order
2 and

ρ(G) =

{[
1 0

0 1

]
,

[
0 1

1 0

]}
.

(g) When n = 3 and charT,K(x) ∈ K[x] is irreducible the Galois group of T is
S3 if and only if ∆ is not a perfect square in K, and is otherwise A3, in
which case ρ(G) ⊂ Pn is cyclic with generator 0 1 0

0 0 1

1 0 0

 .

Keep in mind that T , and therefore charT,K(x), is always assumed separable in
this section30.

Recall from (i) of Example 4.5 that the discriminant ∆ of charT,K(x) is given
by

(ii) ∆ :=
(∏

i<j(λi − λj)
)2

,

which explains the notation introduced in (i) above.
Although (b) and (c) give equivalent conditions for G ⊂ An, there are practical

difficulties with that given in (b) since one cannot compute
√

∆ (as defined) without
knowing the roots of charT,K(x). However, one can compute ∆ without knowing
these roots explicitly, so this difficulty is eliminated.

30Assertion (g) is usually stated under the assumption that char(K) 6= 2, 3, (e.g., see [Lang,
Chapter VI, §2, Example 2, p. 270 ]), but that is only to ensure the separability hypothesis.
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Proof :

(a) Since |Sn| = n!, this is immediate from Lagrange’s theorem and Corollary
9.17.

(b) From (iii) of Corollary 9.20 we see that

(iii) g ·
√

∆ = sgn(β(g))
√

∆,

hence G (' β(G)) ⊂ An if and only if g ·
√

∆ =
√

∆ for all g ∈ G. Since K is
the fixed field of G, this condition is equivalent to

√
∆ ∈ K.

(c) If we define ` :=
√

∆ ∈ L then the roots of x2 − ∆ ∈ K[x] are given by
±`, and both are in K if and only if either one is in K. But ` ∈ K if and only if
g · ` = ` for all g ∈ G, which by (iii) is equivalent to sgn(β(g)) = 1 for all such g.
Assertion (c) follows.

(d) By hypothesis charT,K(x) must be the irreducible polynomial of any particular
eigenvalue λ of T , and L ⊃ K(λ) ⊃ K is therefore a tower of fields. Assertion (d) is
then immediate from (the well-known fact that) [K(λ); K] = n and the multiplicative
property [L; K] = [L; K(λ)][K(λ); K] of indices.

(e) By (a) and (d).

(f) By (e) we have |G| = 2, and the indicated subgroup of P2 is the only
subgroup having that order.

(g) By (e) we have |G|
∣∣6 and 3

∣∣|G|, hence |G| = 6 or 3, and since A3 is the
only subgroup of S3 of order 3 it follows that G = S3 or G = A3. From (c) we
then see that G = S3 if and only if ∆ is not a perfect square in K, and that G is
otherwise A3.

q.e.d.

Examples 9.22 : In all these examples T : Qn → Qn is the linear operator having
the indicated matrix A as usual basis matrix.

(a) (n = 2) : A =

[
0 −4

1 0

]
. In Example 9.9 we found that

α :=

[
2(1 + i) 2(1 + i)

−1 + i 1− i

]

is a fundamental matrix for T . that the order two Galois group is obtained by
restricting complex conjugation to the splitting field Q(i) of the charT,Q(x),
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and if g represents the generator of this group then

P̂g =

[
0 −i

−i 0

]
.

One now sees from Example 9.11 that

(i) ρ(g) =

[
0 1

1 0

]
.

The full faithful representation ρ : G → Pn is therefore given by (i) and

(ii) ρ(e) =

[
1 0

0 1

]
.

(b) (n = 2) : We can both generalize and simplify the previous example by using
Corollary 6.8 (which we take to include the comments following that statement).

Specifically, we begin with the transpose A =

[
0 1

−c −b

]
of a 2 × 2 matrix

in rational form and assume the discriminant ∆ := b2 − 4c of charT,Q(x) =
x2 + bx + c ∈ Q[x] is not a perfect square in Q. The hypothesis guarantees
that the two roots λ1, λ2 generating the splitting field L ⊃ Q are distinct and
not in Q; hence that the index [L; Q] and the order of the Galois group G are
2. Let g be the generator of G. For our fundamental matrix we (know from
Corollary 6.8 that we may) choose the Vandermonde matrix

α :=

[
1 1

λ1 λ2

]
as our fundamental matrix. Since g permutes the roots we must have

g · α =

[
1 1

λ2 λ1

]
,

and from Theorem 9.15(a) we conclude that

P̂g = Pg = α−1(g · α) =

[
0 1

1 0

]
.

The full faithful matrix representation can therefore be expressed exactly as in
(i) and (ii) of the previous example (which is hardly a surprise).
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(c) (n = 3) : We continue with the ideas surrounding Corollary 6.8, now taking

A =

 0 1 0

0 0 1

−d −c −b

 ,

and assuming that the discriminant ∆ = −27d2 − 4c3 + (bc2 + 18dc− 4b2d) · b
is not zero. This restriction on ∆ guarantees only that the three roots λ1, λ2

and λ3 of the characteristic polynomial charT,Q(x) = x3 + bx2 + cx + d ∈ Q[x]
are distinct: it does not guarantee that all lie outside Q. (We could guarantee
the last condition by requiring charT,Q(x) ∈ Q[x] to be irreducible, but at this
point there is no reason to do so.) For our fundamental matrix we choose the
Vandermonde matrix

α :=

 1 1 1

λ1 λ2 λ3

λ2
1 λ2

2 λ2
3

 .

We now focus on the structure of the associated Galois group G, using Theorem
9.16 to identify G with a subgroup of S3. For any g ∈ G we have, in the
notation seen in (i) of Proposition 9.19,

g · α :=

 1 1 1

λσ(1) λσ(2) λσ(3)

λ2
σ(1) λ2

σ(2) λ2
σ(3)

 .

With a bit of work one can then show that

α−1(g · α) =

(
(−1)i+1

∏
k 6=i(λk − λσ(j))∏

k 6=i(λk − λi)

)
.

and that
det(α−1(g · α)) = sgn(g).

We have therefore created a list containing all possibilities for the Galois group,
but, as we see from Corollary 9.21(e), some of these possibilities might not
occur.

Thus far we have only computed Galois groups for separable operators on spaces
of dimensions two and three. The following observation suggests how one might try
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to tackle higher dimensions, i.e., determine the invariants. Indeed, it has been long
known that the invariants of finite groups determine these groups (up to isomor-
phism), and this is one of the (many) reasons why the search for invariants was a
major mathematical industry in the late nineteenth century.

Proposition 9.23 : Let λ1, λ2, . . . , λn ∈ L be a complete set of eigenvalues of T
and set λ := (λ1, λ2, . . . , λn) ∈ Ln. Then the following statements are equivalent:

(a) ∆ :=
(∏

i>j(λi − λj)
)2

is a perfect square in K;

(b)
√

∆ :=
∏

i>j(λi − λj) ∈ K;

(c) vdmdK[x],n(λ) ∈ K;

(d) the Galois group G of T is contained in An (i.e., can be identified via ρ
with a subgroup of An); and

(e) the polynomial
√

p :=
∏

i>j(xi − xj) ∈ K[x1, x2, . . . , xn] is G-invariant under
the action defined in (7.11).

Proof :

(a) ⇔ (b) : Obvious.

(b) ⇔ (c) : By Proposition 1.9(a).

(b) ⇔ (d) : This is a restatement of Corollary 9.21(b).

(d) ⇔ (e) : This is a restatement of Corollary 7.20.

q.e.d.
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Notes and Comments

The best (and most complete) reference for differential Galois theory is [vdP-S].
Reference [Poole] was my basic source for information on linear differential operators.

The attribution appearing in Proposition 1.18(g) to Abel and Liouville is from
[Poole, Chapter I, §5, p. 13].

Chapter 7 of [H-K] is a good reference for cyclic vectors, but only over the real
and complex fields. I found [M-B] particularly useful in connection with this topic.
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