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Chapter 1

Differential rings

In this chapter we record some basic facts from differential algebra. The most
comprehensive reference for this material is Kolchin’s book (1973). Other refer-
ences are Kaplansky (1976), Magid (1994) and van der Put and Singer (2003).
Only Kolchin and an appendix of van der Put and Singer treat partial differen-
tial fields, as we do here.

We will, on occasion, need to consider a non-commutative ring, namely the
ring of linear differential operators. However, except in that case, we assume
our rings are commutative and have a unit 1; the zero ring 0 is the unique ring
with 1 = 0. Homomorphisms always take the unit to the unit; the unit of a
subring is the same as that of the including ring. As usual N and Z denotes
the ring of natural numbers (including 0) and the ring of integers, Q, R and C
denote the fields of rational, real and complex numbers.

Throughout this book, all rings are assumed to be QQ-algebras.

In Sections 1.10 and 1.2 we discuss some consequences of this assumption.
See also Proposition 1.10.2 and Example 1.10.3.

Throughout this book R denotes a A-ring (a Q-algebra by our assumption)
and k denotes a A-field (of characteristic 0 by our assumption). See the first
section of this chapter for the definitions of A-ring and field.

1.1 A-rings
If R is any ring then a derivation § on R is an additive mapping that satisfies
the product (or Leibnitz) rule. Thus, for every a,b € R,
1. 6(a+b) = da + b, and
2. §(ab) = 6(a)b+ ad(b).
An example is the trivial derivation with

da=0 for all a € R.
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Using the product rule, we have
§(1) =6(1-1) =611+ 1-61=25(1).
Therefore (1) = 0. The power rule
§(a™) =na™t, n €N,

follows from the product rule by induction. If b is invertible then

Oz&Dzé(bi):5b2+bﬁ(2>.

1 0b
(5) -
bda — adb

B2
then comes immediately from the product rule.

We fix a set of symbols

Thus

The quotient rule

5 (afb) =

A={81,....0m}.

Definition 1.1.1 A ring on which A acts as a set of commuting derivations is
called a differential ring. A differential ring is ordinary if m = 1 and is partial
if m>1.

Suppose that R is a differential ring. Then, for §,6" € A and a,b € R,

1. 6(a+b) = da+ b

2. 0(ab) = adb + dab,

3. §(8'a) = d'(da).

We usually use the prefix A in place of the word “differential”, e.g. A-ring,

A-field. If R is an ordinary A-ring we usually denote the derivation by prime
("), i.e. @’ = d1a for a € R. For iterated derivations we use the notation

™ = §ra.

However on some occasions it is useful to use the symbol § (but we usually drop
the subscript).

Example 1.1.2 If R is any ring, then we may think of R as a A-ring by making
the derivations act trivially, i.e.

da =0, a€R, §€A.
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Example 1.1.3 Consider the ring of polynomials in one variable 2 R = Clz].
We can make R into an ordinary A-ring by defining

d

Similarly k£ = C(x), the field of rational functions of one variable, can be made
into a A-field.

Example 1.1.4 The ring R = C(z)[e*, log z] is an ordinary A-ring with deriva-
tion § = d/dxz. However C[z][e*,log z] is not. It does not contain the derivative
of logx. But other derivations do make it a differential ring, for example the
“Euler derivation”

d
0=x—.
Tz
Example 1.1.5 In the example above we put the derivation d/dx on R = C[z].
But there are others choices. For example, if

p € R=Cl[z]
Then there is a unique way of making R into an ordinary A-ring such that
' =dxr =p.

We are forced to define
5— d
- p dI7
and it is easy to see that this is a derivation.

Example 1.1.6 More generally, if R = C[z1,...,z,,] is the ring of polynomial
functions of m variables we may make R into a A-ring by defining

0

5i = )
8:5,»

1=1

Sy MM

Example 1.1.7 If k is the field of functions of m complex variables z1, ..., zm
that are meromorphic in a given region we may make k into a A-field by defining

0

0

We may make Clzy,...,2,,] into a A-ring in other ways, but the situation
is complicated by the requirement that our derivations commute.

Example 1.1.8 Let R = C[z1,22]. Choose

P1,D2,q1,92 € R.

Suppose we wanted to make R into a A-ring with two derivations that satisfy:

011 = P1, 012 = P2

dox1 = q1, dox2 = @o.



4 CHAPTER 1. DIFFERENTIAL RINGS

Evidently we would have

0 0
61 =p1 — — d
1=Dp1 B + D2 Oy’ an
2 =q1 021 q2 (“)xg'

However we require that the derivations commute. Therefore
(51(52.%1 = 52511’1 and (51(52%2 = 5261.’EQ.

This restricts our choice. We need

g Ly, OO0 00
! 6331 2 8332 ! (91‘1 2 81}2’
Ip2 op2 _ O O

+
a 8331 P 83?2 p1 6371 p2 81‘2

Conditions such as these are often called integrability conditions.

1.2 Constants

2

In analysis, a “constant” is simply a complex or real number. In our setting we
need an algebraic definition. We use the result from analysis that a function is
constant if and only if all of its derivatives are identically zero.

Definition 1.2.1 If R is a A-ring we denote by R® the ring of constants of R,
defined by
R ={a€R|da=0fordc A}

As we saw in the first section, §1 = 0. By additivity, n (by which we mean
the n-termed sum 14---+1) is a constant for every n € Z. Since Q C R (which
we assume) the quotient rule implies that Q C R®. There exist non-trivial
derivations of R and C (extend Proposition 1.6.1, below, to an infinite set of
indeterminates), however whenever these appear (in examples only) we assume
that they are given the trivial derivation.

Proposition 1.2.2 If R is a A-ring, then R® is a ring. If K is a A-field, then
K2 is a field.

Proof. The fact that R® is a ring follows immediately from the facts that a
derivation is additive and satisfies the product rule. Suppose that a € K%,
a # 0. Then a has an inverse b in K, and the quotient rule implies that b is also
a constant. O

In this book we restrict our attention to characteristic 0. One reason is that
A-fields of characteristic p have “too many” constants.
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Example 1.2.3 If k£ is a A-field of characteristic p then, for every a € k,
§(aP) = paP~'éa = 0.

So k® is quite large; indeed, it contains all of kP. The correct way to treat
non-zero characteristic is to use “iterated” or Hasse-Schmidt derivations. This
was done first by Okugawa (1962/1963) and more recently by Matzat and van
der Put (2003). We will not pursue that theory here.

1.3 Linear A-operators

Just as in calculus, we have need to consider “higher” derivatives

Definition 1.3.1 © denotes the free commutative monoid generated by A. An
element 6 of O is called a derivative operator.

Thus an element 6 of © has a unique representation of the form

9:5161”.6;?,
for some ey, ..., e, € N. The unit of © is
[ = 6040

We think of € as an operator. If a is an element of a A-ring and
9:5? ce Bl

then
0(a) = 67" -+ 05 (a).
In this sense 1 is the identity operator, 1(a) = 1.

Definition 1.3.2 If
0=07"...00m €0

m

then the order of 0 is
ordf =e; + -+ en,.

For each n € N, we let
O(n)={0 €O |ordf <n}.

Definition 1.3.3 Let R be a A-ring. The free R-module with set of generators
© is called the ring of linear A-operators and is denoted by R[A].

An element a € R C R[A] denotes the scalar multiplication operator, i.e.

a(b) = ab.
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An element of R[A] is a finite sum

L= Xr: ai9i
i=1

where a; € R and 6; € ©. We call elements of R[A] linear differential operators.
If a is an element of some A-R-algebra and

L= Zaﬂi S R[A]
=1

then

L(a) = Z a;b;(a).

Thus each 6 € A acts as the (given) derivation on the R-algebra and elements
of R act as scalar multiplication.
In the case of ordinary A-rings, an element of R[A] has the form

L:an5n+--'+a15+a0

(here we have written ¢ instead of d1). This is a linear differential operator as
studied in a course on ODE (ordinary differential equations).

Definition 1.3.4 Let R be a A-ring. Define a non-commutative ring structure
on R[A] where multiplication is composition of operators.

We often use juxtaposition to indicate the ring multiplication, however we
sometimes use the symbol o to emphasize the definition.
If 6;,0; € A then
0;0; = 0;0;

since the derivations commute. However if a € R then
0; 0 a = d;(a) + ad;.
Indeed, for any b € R
(6; 0 a)(b) = d;(ab) = 6;(a)b+ ad;(b).

We shall study this non-commutative ring much more in Chapter ?77?.

1.4 A-subrings and A-extensions

Definition 1.4.1 By a A-subring of R we mean a subring S that is a A-ring
under the restriction of the derivations on R. Similarly, if K is a A-field then
by a A-subfield of K we mean a A-subring that is a field. If F is a A-field that
contains K as a A-subring then F is called a A-extension field of K.
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Throughout this book, all A-rings are assumed to be Q-algebras.

In the literature this is called a Ritt algebra. (A Ritt algebra is often incor-
rectly defined to be a A-ring that contains Q. This excludes the 0 ring, which
can appear, for example, as a ring of fractions, or a ring associated with the
empty set of a A-scheme.) We will see in Example 1.10.3 why it is useful to
restrict our rings to be Ritt algebras.

Definition 1.4.2 Let S be a A-ring and R a A-subring. Let n1,...,n, be a
family of elements of S. Then

Rim, - om}

denotes the smallest A-subring of S that contains R and each 7;. If E is a
A-extension field of a A-field K then

K, ... )
denotes the smallest A-subfield of F that contains K and each 7;.

Thus
R{n1,...,mm} = R[(0n:)oco,i=1.....n]-

and
K{n,..onn) = af(K{n1, ..., })-

Definition 1.4.3 Let S be a A-ring containing R (as a A-subring). Then S is
finitely A-generated over R if there is a finite family 7y, ..., n, of elements of S
such that

§=R{m,....nn}.

Similarly a A-extension field F of K is finitely A-generated over K if there is a
finite family 71, ..., n, of elements of F with

E =K, ).

Our primary interest is in A-rings R that are finitely A-generated over k.
In fact, except for rings of A-polynomials (Section 1.9), our rings will even be
finitely generated over k, i.e. of the form k[n,...,n,].

As we shall see, constants play an important role in the Galois theory. The
following result is basic. Other results can be found in Section 1.12.

Proposition 1.4.4 Suppose that R is an integral domain containing a A-field
K. Then any constant of R that is algebraic over K is algebraic over K2.

Proof. Let ¢ € R® be algebraic over K, with

P=X'4+P X' +.. .+ P e K[X]
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being the monic polynomial of least degree with coefficients in K satisfying
P(c) = 0. Then, for each 6 € A,

0=0(P(c)) = 6Py_1c ' -+ 0P,
because éc = 0. The minimality of P implies that
0Pg 1 =---=0P =0,
i.e. each P; € K2, so c is algebraic over KA. O

Corollary 1.4.5 If K is a A-field then K* is algebraically closed in K.

Proof. This means that if a € K is algebraic over K2, then a is in K. This is
immediate from the proposition; take R = K. O

1.5 Rings of fractions

Recall that a multiplicative set of R is a subset S of R satisfying
1. 1€ S, and
2. ifae Sand be S thenabe S.

Some authors do not permit 0 to be an element of a multiplicative set. For
algebraic geometry it is essential that 0 be allowed; for us it does not matter.
Given a multiplicative set S C R we can form the ring of fractions

RS~

See, for example, Lang (2002, Section 4, p. 107) or ???. An element of RS™! is

a denoted by
a

ga
where a € R and b € S. This symbol denotes an equivalence class where

C

a
b
if there exists s € S with

s(ad —cb) =0 € R.

If 0 € S then RS™! is the 0 ring. We let
6s: R—RS™',  gs(a) = 1.
be the canonical homomorphism. The kernel of ¢g is

ker s = {a € R | sa = 0 for some s € S}.
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Proposition 1.5.1 Let S be a multiplicative set of R. Then there is a unique
way to make RS~ into a A-ring so that ¢s is a A-homomorphism.

Proof. If ¢g is a A-homomorphism we need

§ (%) = dps(a) = ¢ps(da) = %a

for every a € R and 6 € A. If b € S then

b1 obl b 1
0—5“)—5(1b> _1b+15(b>’
1 b
(3) -

5 (g) _ béab—Qaéb'

SO

The product rule then gives

Thus the extension of § to RS™! is unique, if it exists.
To show that it exists, we need to show that it is well-defined. If a/b = ¢/d
then there exists s € S with s(ad — bc) = 0. Therefore

0 = ds(ad — be) + s(add + dda — bdc — cob).
Multiply by bds to get

0 = bdsds(ad — be)+
s*((bda — adb)d® — (ddc — cdd)b® + (ad — be)(ddb + bd))
= s?((bSa — adb)d® — (ddc — cdd)b?).

It is equally easy to show that 0 is a derivation, that the derivations commute
and that A is a A-homomorphism. O

If ¢ € R then, as usual, R[1/c| denotes the A-ring of fractions RS~ where
S ={c|deN}.

Here we define ¢ = 1, even if ¢ = 0. R[1/c] is the 0 ring if ¢ is nilpotent.
However, that case will not appear in this book (except perhaps by accident).
We also will consider the field of fractions gf(R) of a A-integral domain.
This is the ring of fractions
RS~

where S = R) is the multiplicative set consisting of all non-zero elements of
R. In this case the canonical homomorphism R — qf(R) is injective and we
identify R with its image.
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1.6 Extensions of derivations

Suppose that R is a A-ring and S is a ring (not A-ring) containing R. In the
previous section we saw that if S is a ring of fractions of R then there is a unique
way to extend the derivations from R to S. In general there may be many ways
to extend the derivations. (If we did not assume that R is a Q algebra there may
be no ways of doing so. See Example 1.6.3 below.) In this section we record a
few results but leave an exhaustive study to another venue. We start with an
ordinary A-field. Compare with Example 1.1.5.

Proposition 1.6.1 Suppose that k is an ordinary A-field. Let (X1,...,X,) be
be a family of indeterminates over k. For each j = 1,...,n we suppose given

a; € k[(Xl,,Xn]

Then there is a unique structure of A-ring on k[(X1,...,X,] extending the
derivation on k and having the property

[ .
Xjfa].

Proof. This is Bourbaki (1990, V.16.2, Proposition 3, p. A.V.128), but we sketch
a direct proof here.

For any P € R = k[(X1,...,X,], we let P? denote the polynomial obtained
by differentiating the coefficients of P. Thus, if

P=> P o, X{t - X5,

then
P B, L XE X

This defines a derivation on R that extends that of k. We denote it by V so
that
VP =P°.

Now define
- 0
0= P
V + j;aj e

This is a sum of derivations on R and therefore is a derivation on R. It clearly
has the required properties. The additivity of derivations and the product rule
imply that this derivation is the only one possible satisfying the properties of
the proposition. O

If m = card A > 1 (partial A-fields) the situation is made more complicated
by the requirement that the derivations commute. See Example 1.1.8. Given

a;;j €ER t=1,....m j=1...,n,
there are unique derivations of R extending those on k that satisfy

(Sin = aij.
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However these derivations need not commute. In Section 777 we will see an
example where they, in fact, do commute.

Proposition 1.6.2 Let K be a A-field and E an algebraic extension of K.
Then there is a unique way to make E a A-extension field of K.

Proof. Let 6 € A. We first show that § has a unique extension to a derivation
of E. This follows from Bourbaki (1990, V.16.2, Proposition 4(b), p. A.V.129)
but we sketch the proof here.

By Zorn’s Lemma we may find a maximal extension L of K in E to which
0 extends uniquely. Suppose that © € E, ¢ L. Let P € L[X] be the minimal
monic polynomial that vanishes on x. Then

dP

P'(z) = X

(2) £0
and therefore has an inverse in L[z]. Define
u=—P°(z)P'(z)" .

If 0 extends to L[z] then, using the additivity of § and the product rule, we
must have
0=0(P(z)) = P°(z) + P'(x)dx

which forces
or = u.

Any element y € L[z] can be written as a polynomial @ in z (uniquely if the
degree of the degree of @) is smaller than the degree of L). Say

y=Q(z).

Then we must have
5y = Q°(z) + Q' ()u.

Thus, if there is an extension of J, it is unique.
To show the existence of an extension we must first show that the formula

iy =Q’ () + Q'(x)u

is independent of the choice of (). But, if

then R — @@ = AP for some polynomial A so
RY(2)+R'(z)u = P°(2)+P' (2)u+(A° (x)+A' (2)u) P(x)+A(x)(P° (2)+ P (z)u).

But P(z) + P’'(z)u = 0 by definition of u and P(z) = 0 by definition of P. So
¢ is well-defined. The additivity of ¢ and the product rule are easy to check.
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Finally we need to show that two elements § and §’ in A commute on L(z).
Note that
86" — 4’6

is a derivation on L(x) that restricts to the trivial derivation on L. By what
we have shown, this trivial derivation on L extends uniquely to a derivation on
L(z). This extension must be trivial, so 6§’ — 0 = 0 on L(x). O

Note that we used our assumption that K is a field of characteristic 0 by
asserting that P’(x) is invertible. This is true as long as x is separable over L
(or K). However for an inseparable extension there may be no way or many
ways to extend the derivation.

Example 1.6.3 Let K be a A-field of characteristic p, a € K having no p-th
root in K and x a p-th root of a in some extension field. Thus

P=X?—-a
is the minimal polynomial for . If § is a derivation on K[z] then we must have
0=6P(z) = —da+ prP~'éxr = —da.

If a ¢ K2 there can not be any extension of § to K[z]. On the other hand, if
a € K* then this equation tells us nothing about éz. In fact, it may be chosen
arbitrarily in K|x].

1.7 A-ideals and A-homomorphisms

Definition 1.7.1 Let R be a A-ring. By a A-ideal a of R we mean an ideal
that is closed under A, i.e.

da €a foralla € aand § € A.

A-ideals are far less plentiful than non-differential ideals.

Example 1.7.2 Let R = C[xz] be the ordinary A-ring with 2’ =1 (i.e. § =
d/dzx). We claim that R has no proper non-zero A-ideal. Suppose that a is a
non-zero ideal of R and let P € a, P # 0. We suppose that P has degree n (as
a polynomial in z) and is monic. Then

PM™ —plcqg
so a = R (recall that R is assumed to contain a field of characteristic 0).

Definition 1.7.3 Let R and S be A-rings. By a A-homomorphism of R into
S we mean a homomorphism ¢ that commutes with the derivations, i.e.

d¢(a) = ¢(da), for a € R and § € A.
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Definition 1.7.4 Suppose that R and S are A-rings that contain a common
A-subring T'. Then a A-homomorphism ¢: R — § is over T if the restriction of
¢ to T is the identity.

Proposition 1.7.5 Suppose that K is an algebraic extension of k and ¢: K —

L is a homomorphism over k. Then ¢ is a A-homomorphism.

Proof. To simplify the notation we assume that L = im(¢). If § € A, then
podog!

is a derivation on L that restricts to § on k. But, by Proposition 1.6.2 there is
a unique derivation on L with a given restriction to k. Therefore

$odog™ =6
which makes ¢ a A-homomorphism. O

Proposition 1.7.6 Suppose that R and S are A-rings and ¢: R — S is a
A-homomorphism. Then ker ¢ is a A-ideal.

Proof. If a € ker ¢, then, for § € A,

0 =4d(¢a) = ¢(da)
so da € ker ¢. O
Proposition 1.7.7 Let a be a A-ideal of R. Then R/a has a unique structure
of A-ring so that the canonical mapping R — R/a is a A-homomorphism.

Proof. For 6 € A, and a € R, we must define
d(a+a)=da+a,

however we must show that this is well-defined. Suppose that a+a = b+a. Let
c=b—a € a, then
0b = da + de.

The last term is in a since a is a A-ideal, therefore
0b+a=da+a.

We must also show that this formula defines a derivation on R/a and that the
derivations commute. But this is easy. O

Using this proposition we can give an alternate proof of Proposition 1.7.5.
Indeed ¢ (of Proposition 1.7.5) has kernel (0), which is a A-ideal.

Proposition 1.7.8 Suppose that ¢: R — S is a A-homomorphism of A-rings.
If b is a A-ideal of S then a = ¢~ 'b is a A-ideal of R.
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Proof. If a € a then ¢(a) € b so, for § € A,
¢(da) = d(ga) € b
which says that da € a. O

In fact, there is a bijection between A-ideals of S and A-ideals of R that
contain ker ¢.

Definition 1.7.9 Let S be a subset of R. Then [S] denotes the smallest A-ideal
of R that contains S.

Thus
[S] = (@S) = {EZTZHZSI ‘ r; € R,Gi S @,Si S S}

This is the ideal generated by all 0s where § € © and s € S.

1.8 Tensor product

We will have occasion to use tensor products of rings (or modules), but only in
the very simplest of cases; the base ring will always be a field. For a treatment of
tensor products for that special case see Zariski and Samuel (1975, Ch. III, §14,
p. 179). However to show that the tensor product of two A-rings is itself a A-ring
it is more convenient to use the treatment of Atiyah and Macdonald (1969, p.
24-31) or Lang (2002, Chapter X VI, p. 601). We sketch the construction below.
Recall that we assume that all A-rings are A-k-algebras. Since the base ring for
the tensor product in this section will always be that field we write ® instead
of ®y.

Let R and S be A-k-algebras. Following Atiyah and Macdonald (1969, proof
of Proposition 2.12, p. 24) we let

C = kx5,

This is the set of formal finite linear combinations of elements of R x S with
coefficients in k, i.e. expressions of the form

n
Zai(rivsi) a; €k,r; € R,s; €85

i=1
C'is a k-vector space. Let D be the k-subspace generated by
(r1 +re,8) — (r1,s) — (12, 8)
(T,Sl + 52) - (7"751) - (Tv 52)
(ar, S) - G(T, 5)

(r,as) —a(r,s)

where ,71,72 € R, 5,581,802 € S, and a € k.
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We make C' into a ring in the obvious way:
n t n t
(Z ai(ri, Si)> (Z bj (tj, u])) = Z Z aibj (’/‘itj, Siu]').
i=1 j=1 j=1j=1
The identity is (1,1). It is easy to see that D is an ideal in C. Then
R® S=C/D.
The image of (r, s) is denoted by r®s. There are canonical ring homomorphisms

R— C —R®S and S— C —R®S
r—(r,l) — rel s —(1,s) —,1®s,
and R ® S is generated as a ring by the images of R and S.

Proposition 1.8.1 R® S has the unique structure of A-ring so that the canon-
ical mappings are A-homomorphisms.

Proof. Let 6 € A. In order that the product rule hold, we must have
Sres)=06((rel)(1®s)) =0rel)(1®s)+ (re1)i(les).
In order that the canonical homomorphisms be differential we need

(res)=0rel)1es)+ (rel)(leds)
=0r®@s+s®Jir.

Thus ¢ is uniquely determined, if it exists.
To show that R ® S is a A-ring we use the construction above. First note
that C' is a A-ring by the formula

§(Zai(r,—, sl)) = Z (8ai(ri, si) + ai(6ri, 8i) + ai(r;, 6s;))

7

where § € A. Evidently § is additive and the various 6 € A commute. It is a
bit tedious to check product rule. The homomorphisms

R— C and S— C

r— (r,1) s — (1,9)
are A-homomorphisms. Next note that D is a A-ideal. Therefore
R®S=C/D
has the structure of A-ring and the canonical homomorphisms
R—-C—-R®S and S—-C—-R®S

are A-homomorphisms. O
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So far there has been no need to assume that k is a field. We could as
well have used R ® g S where B is any A-ring and R and S are A-B-algebras.
However the following propositions do require that k be a A-field.

Proposition 1.8.2 Suppose that P and % are bases of R and S over k. Then
the set
pRo pePoeX

s a basis for R® S. In particular the canonical homomorphisms
R—R®S and S—R®S

are injective.

Proof. The first statement is Lang (2002, Corollary 2.4, p. 609). Assume that
the basis ¥ of S contains 1. Suppose that

n
>_api
i=1
is in the kernel of the canonical mapping, where a; € k, p; € P. Then
i
By the first statement, a; =0 fori=1,... n. O

We sometimes identify R and S with their images in R® S. Over a ring the
tensor product can “collapse” to 0:

Z/(2) @z Z/(3) = 0.

But over a field this cannot occur: R® S = 0 if and only if R = 0 or S = 0.
The following result will be used in Proposition ?7.

Proposition 1.8.3 Let R, S and T be k-algebras with S CT. If R®S = RRQT
then S =T.

Proof. Let P be a basis of R, ¥ a basis of S and T a basis of T" with ¥ C T.
We assume that 1 € P. Then, for 7 € T,

1T R®S

SO

1l®r= Z Qpop @ 0.
peEP,oceX

By the preceding proposition, a,, = 0if p # 1 or ¢ # 7 and a1, = 1. In
particular, 7 € X. O

The following proposition is Zariski and Samuel (1975, Theorem 35, p. 184).
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Proposition 1.8.4 Let a C R and b C S be A-ideals. Then
a®S+R®Db
is a A-ideal of R® S and
(R®S)/(a®@S+R®b)

18 isomorphic to

(R/a) ® (S/b).

a® S+ R ®b may also be described as the ideal generated by a and b
(thinking of R and S as subsets of R ® S). We also have

a®S+R®h:{Zai®bi\aieaorbieb}.

If a and b are prime, it does not follow that a ® S + R ® b is prime.
Example 1.8.5 Suppose that ¥ = C(x) and K = C(/z). We consider
K®K.
K, being a field, has a unique prime A-ideal, namely (0). But
(0)® K+ K ® (0) =(0)
is not prime, i.e. K ® K is not an integral domain. Indeed

Vzel+1leoVr)(Vrel-10yr) =21 —-1®x=0.

1.9 A-polynomials

Definition 1.9.1 Suppose that 7 is an element of some A-extension field of k.
We say that 7 is A-algebraic over k if the family

(6n)aco

is algebraically dependent over k. In the contrary case we say that n is A-
transcendental over k.

Thus 7 is A-algebraic if it “satisfies a differential polynomial equation”, i.e.
there is a polynomial
P e k[Xl, R 7Xn]7

for some n € N, and 604,...,60, € © such that
P(b1n,...,0,m) =0.

If k is an ordinary A-field then n is A-algebraic over k if there is a polynomial
in P € k[Xo, ..., Xq] with

P(n’ 7]/77’//5 M ’n(d)) = 0'
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Example 1.9.2 e® satisfies
() —e® =0.
The Bessel function J, (x) satisfies
22T, ()" + xdp(2) + (22 — n?)J.(z) = 0.
The Weierstrass p-function p(z) satisfies
p(2)? = 4p(2) — g2p(2) — gs.

Functions that are A-transcendental are sometimes called transcendentally
transcendental.

Example 1.9.3 Euler’s gamma function

F(a:):/ t* et
0

is A-transcendental (Rubel, 1989).

Example 1.9.4 The (lower) incomplete gamma function is

'y(a,x):/ t*tetat.
0

If we think of this as a function of x, with a as a parameter, it is A-algebraic
over C(z). Indeed,
dy(a,x) o1 .
dx

S0 )
d*y(a,z) a—1-=x
L )
On the other hand, if we think of v(a,z) as a function of a, with = as
a parameter, then it is A-transcendental over C(z). Rubel (1989) has more
examples and references.

Thinking of v(a,x) as a function of two variables, i.e.

o 0
A{aa’ax}’

then 7y(a,x) is A-algebraic over C(a, z). As we saw above

%~(a, a—1—=x
o) _azior

More generally we have the following definition.
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Definition 1.9.5 A family ny,...,n, of elements of some A-extension field
of k is said to be A-algebraically dependent if the family (0n;)oco i=1,....n IS
algebraically dependent. In the contrary case 71,...,n, are said to be A-
algebraically independent or to be a set of A-indeterminates over k.

Proposition 1.9.6 For eachn € N there is a set yi,. .., y, of A-indeterminates
over k.

Proof. Let (Xg j)gco, j=1,..n be a family of indeterminates over k and set

By Proposition 1.6.1, there is a unique structure of A-ring on R such that for
every § € A
5X9j = X(;gj.

Set
yj = X5

We need to show that the derivations commute. If 6,6’ € A then
66/X9j = (SX(;/@]‘ = ng/gj = X5/§9j = 5/X59j = (V(Sng.

O

Definition 1.9.7 If y,...,y, are A-indeterminates, then k{y1,...,y,} is the
ring of A-polynomials over k.

So a A-polynomial in ¥, ..., y, is simply a polynomial in y1, ..., ¥y, and all
their derivatives.

Definition 1.9.8 Let y1,...,y, be A-indeterminates over k and let ny,...,7,
be elements of some A-extension field of k. The A-homomorphism over k

k{y17"' ayn} — k{nla"'ann}

Yi —— i

is called the substitution homomorphism. If P € k{yi,...,yn} then we usually
write

P(’I’]17...7’I’]n)

instead of s(P).

1.10 Radical and prime A-ideals

A-rings are rarely Noetherian.
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Example 1.10.1 Ritt (1932, p. 12) Consider the ring k{y} of ordinary A-
polynomials in one indeterminate. Then

1o 1o (3)]

W'yl S Wy "y S WYy Y Yy

is an infinite proper ascending chain of A-ideals. Thus k{y} fails to be a Noethe-
rian A-ring. To prove this we need to show that

yMyn D g [(yOy ) 1 =1, n —1].

Suppose the contrary,

n—1 t

gt =3 N " Ay (y Oyt @) (1.10.1)

=1 7=0

for some A;; € k{y}. The left hand side has degree 2 (in the indeterminate
Y,y .. .), so all the terms on the right of higher degree must cancel. This allows
us to assume that
Aij € k.
Define the weight of a A-monomial to be the sum of the orders of the deriva-

tives, so the weight of
() (ye)®

is
d161 + -4 d»,\er.
Note that y(?y(+1) has weight 2i + 1, and
i), (i ! i i), (i
(y( )y +1)) - (y( +1))2 + y(Dqy(i+2)
has weight 2¢ + 2. In general
(y(i)y(iﬂ))(j)
has weight 2i 4+ 1 4+ j.

Getting back to Equation 1.10.1, we see that the left hand side has weight
2n 4 1. The terms on the right hand side that have weight 2n + 1 are

Aij (yDyi0) @

where 20 + 1 4+ j = 2n + 1. Therefore

n—1
y(n)y(n+l) = Z A on—2i (y(l)y(zﬂ))@n_?l)a
i=1
where B; = A, 2p—2; € k. The monomial y’y(zn) appears in
(y/yl/)(Qn 2)
and in no other term. Hence A 2,,—2 = 0. But then

(n) (n+1) _ g

Yy

which is absurd.
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On the other hand radical ideals behave much better. In the literature, the
smallest radical A-ideal containing S is denoted by {S} and is called a perfect
A-ideal. In general it must be defined recursively as in Kolchin (1973, p. 122).
However our assumption that R is a Ritt algebra (an algebra over Q) permits
us to make a simplification.

Proposition 1.10.2 If a is a A-ideal of R then
va={a € R|a" € a for somen € N}
is a radical A-ideal.

Proof. Let a € /a so that, say, a™ € a. We claim that for any § € A, and
k=0,...,n,
a" " *a)* € a.

The case k = 0 is by assumption. Differentiating, we get
(n — k)a" " F=1(5a)? ! 4 2ka™*(5a)* "1 (6%a) € a.

Multiply by da and note that the second term is then in a. Because we can
divide by n — k we have
an—k—l(éa)2k+2 ca

which completes the induction. Putting kK = n we see that
(5a)2n+2 ca
so that da € /a. O

In particular {S} = /[S]. We use the later notation and simply call it the
radical A-ideal generated by S. If a € 1/[S] then

ad = Z Cieibi

where d € N, ¢; € R, §; € © and s; € S (not necessarily distinct). In the
preceding proposition we made use of our assumption that all A-rings are Q
algebras. If this assumption were not made then this proposition would be
false.

Example 1.10.3 Consider the ordinary A-ring Z[z] where 2’ = 1. Then the
ideal
(2,2%) C Z[7]

is a A-ideal (since (z2)" = 2x) so
R =Z[x]/(2,2?)

is a A-ring. However it is not a Q algebra. Writing T for the image of  in R
we have 72 = 0 so
T € 4/[0]
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but ' =1 is not in /[0].

In fact R has no prime A-ideal (Diffspec R = (). Indeed any prime A-ideal
would have to contain /[0] and therefore 1. This cannot happen in algebra:
every non-zero ring contains a prime ideal (Spec R = () if and only if R =0.)

The next proposition will be used frequently in the sequel. We need a lemma
first.

Lemma 1.10.4 Let a,b € R and 0 € ©. If d is the order of 6 then
a®t10b € [ab].
Proof. The result is obvious if d = 0 (i.e. § = 1). Write
6 = o6

for some § € A and 6’ € © has order d — 1. By the induction hypothesis,

a®d'b € [ab]
S0
ad(a'b) = da®6a8'b + a®1660'b € [ab].
By induction, the first term on the right is in [ab]. O

Proposition 1.10.5 Let S and T be subsets of R. Then

VISIVITI € VISIN VT = VIST] -

Proof. The first inclusion is obvious. Let a € /[S] N /[T] so that a® € [S] and
a' € [T] for some s,t € N. Then a*** € [S][T] Using the lemma we see easily
that

[S][T] € VIST]

so that a € /[ST]. Now let a € /[ST]. Therefore, for some n € N,
a” € [ST) C [S]N[T]
hence a € v/[S] and a € /[T]. O

Proposition 1.10.6 Suppose that a is a A-ideal of R and that ¥ is a multi-
plicative set with X Na = (). Let m be a A-ideal containing a that is maximal
with respect to avoiding ¥. Then m is prime.

Proof. First observe that \/m is also disjoint from ¥ and, by maximality, m =
v/m. Suppose that ab € m but @ ¢ m and b ¢ m, so that s € /[m,a] and
t € /[m,b] for some s,¢ € 3. But then

st € \/[m,aly/[m,b] C \/[m,ab] =m

which is a contradiction. O
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Corollary 1.10.7 Let S be a subset of R and b € R Then there is a prime
A-ideal of R containing S but not b if and only if no power of b is in [S], i.e.
b ¢ VIS].

Proof. Take ¥ to be the set consisting of 1 and all powers of b. O

If Pek{yy,...,on} and P(m1,...,nn) =0 we call (n1,...,1,) a zero of P.
The question arises: does every A-polynomial have a zero? The answer is “yes”,
but unfortunately it is the wrong question. Consider the ordinary A-polynomial

P=y —y.

Evidently P has a zero, namely 0 itself. What we really want is a zero of P that
is not a zero of the A-polynomial y. We start with a set S of A-polynomials
and another A-polynomial C. We are interested in finding a zero of all the
A-polynomials in S having the property that C' does not vanish at it.

Proposition 1.10.8 Let S C k{y1,...,yn} be a set of A-polynomials and C €
kE{y1,...,yn}. Then there exist n1,...,n, in some A-extension field of k with
Pmy...ymn) =0 forallPe S,

C(nla . ann) 7& Oa

if and only if no power of C is in [S].

Proof. By the preceding corollary, there is a prime A-ideal p containing [S] that
does not contain C. Then

af (k{y1s-- -, yn}/p)

is a A-extension field of k. If n; is the image of y; in this field, then (n1,...,7,)
is a zero of S but not of C. O

Of course, it may not be apparent whether some power of C is in [S] or not,
even if C' = 1, particularly for partial A-polynomials. As a simple example,
consider the A-field k = C(x,t) where

0 0
=5 and 0y = —.

o ot

If y is a A-indeterminate and
S = {51:(] + ta 529 - J}},

then
52(51y + t) - 51(52]; - 33) =2c [S}

So the system S has no solution: it is inconsistent. The technique of characteris-
tic sets can be used to decide consistency, the membership problem for A-ideals
and other problems. For a tutorial on this subject see Sit (2002).
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1.11 Maximal A-ideals

Definition 1.11.1 By a mazimal A-ideal of a A-ring R we mean a A-ideal of
R that is maximal among the A-ideals of R.

Note that a maximal A-ideal need not be a maximal ideal. There may exist
ideals strictly containing it (but not A-ideals).

Example 1.11.2 As in Example 1.7.2, we let R = Q[z] be the ordinary A-ring
with 2’ = 1. In that example we saw that R has no proper non-zero A-ideal.
Thus (0) is a maximal A-ideal but it is not a maximal ideal.

Proposition 1.11.3 Let m be a maximal A-ideal of R. Then m is prime.
Proof. Proposition 1.10.6 where 3 = {1}. O

An ideal M of a ring R is maximal if and only if R/M is a field. This
is equivalent to saying that R/M has no proper non-trivial ideal. We have a
similar condition.

Definition 1.11.4 A A-ring R is said to be A-simple if it has no proper non-
zero A-ideal.

Proposition 1.11.5 A A-ideal m of R is a mazimal A-ideal if and only R/m
18 A-simple.

Proof. The set of A-ideals of R/m is in bijective correspondence with the set of
A-ideals of R that contain m. O

In particular, a A-ring R is A-simple if and only if (0) is a maximal A-ideal.
Because a maximal A-ideal is prime, it follows that a A-simple ring is an integral
domain. The next result will be used frequently in what follows. It is another
result concerning constants. The simple proof is based on an idea of Alberto
Baider.

Proposition 1.11.6 Suppose R is a A-simple ring containing a A-field k and
that R is finitely generated (not finitely A-generated) over k. Then gf(R)™ is
algebraic over k®.

Proof. Let ¢ € qf(R)®. Define the “set of denominators”
a={be R|bce R}

Evidently a is a non-zero ideal and it is a A-ideal because ¢ is a constant. But
R is A-simple, so 1 € a and ¢ € R®. Because qf(R) is a field, every non-zero
element of R? is invertible.

By Proposition 1.4.4, we need only show that ¢ is algebraic over k. Suppose
not, so ¢ is transcendental over k. We know (Atiyah and Macdonald, 1969,
Proposition 5.23, p. 66) that there exists a polynomial P € k[c] such that any
homomorphism

¢: klc] — k,
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with ¢(P) # 0, extends to a homomorphism (not A-homomorphism) of R into
an algebraic closure of k. Choose d € C with P(d) # 0 and let

@: klc] — k, cr—d,

be the substitution homomorphism. ¢ —d € R® and therefore, by the above
remarks, must either be 0 or be invertible in R®. But it cannot be invertible
since ¢(c — d) = 0, so ¢ = d € C which contradicts the assumption that ¢ is
transcendental over k. O

The result is also true if R is finitely A-generated. Instead of extending a
homomorphism we need to extend a A-homomorphism. That can be done, by
Kolchin (1973, Theorem 3, p. 140), but the proof is more difficult and we do
not need the added generality.

The fact that there may be constants in qf(R) algebraic over C' adds com-
plications to the Picard-Vessiot theory. Rather than dealing with that here we
make a simplifying assumption.

Corollary 1.11.7 Assume that C = k® is algebraically closed. If R is a A-
simple ring finitely generated over k then

af(R)A = C.

1.12 The Wronskian

The Wronskian determinant gives a criterion for solutions of a linear homoge-
neous ordinary differential equation to be linearly independent over constants.
We generalize that theorem here. We also introduce the Wronskian matriz
which will play an important role in the Picard-Vessiot theory.

Definition 1.12.1 Suppose that K is an ordinary A-field and n = (m1,...,7,)
is an n-tuple of elements of K. Then the Wronskian matriz of n is the matrix

771 P 77774
mooocom
W(U) = W(7717~~~777n) = : :
ngnfl) o 777(17171)

The Wronskian determinant is the determinant of the Wronskian matrix.

Proposition 1.12.2 Let K be an ordinary A-field with field of constants C =
K2 ni,...,n, € K are linearly dependent over C' if and only if

det W(n) =0.
Proof. Suppose first that

cm + -+ culn =0,
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where ¢y, ..., ¢, € C are not all zero. Differentiate this equation successively to
get the vector equation

Uit Tn

al + |+ - 4| ¢ |=0
n—1 n—1
= o

Thus the columns of the Wronskian matrix are linearly dependent so the Wron-
skian determinant is zero.

Conversely, suppose that det W(n) = 0. We may suppose that no proper
subset of 71, ...,n, has the property that its Wronskian determinant vanishes.
The case n =1 is trivial, so we may assume that n > 1. Therefore

det W(n1,...,mn—1) # 0.

Since the columns of the Wronskian matrix W (n, ..., n,) are linearly dependent
over K there exist ay,...,a, € K, not all zero, with

Zaﬂ](z D - 0, t=1,...,n.

By what we have already proven, 7, ...,7n,—1 are linearly independent over C,
therefore, because K is a field, we may assume that a,, = 1. We claim that each
a; is in C. Differentiating the above equation we get

n—1 n

i1 .
> a4 Y g =
j=1 j=1

The second term is zero for i = 1,...,n — 1, therefore

Za' =D —o,  i=1,....,n—1,

i.e.
m cre M-t a al
. . : W(Th) s Tin 1) =0
n§"*2) . 777(1”:12) an,_q an,_q

It follows that

We actually use the contrapositive more than the proposition itself.
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Corollary 1.12.3 Let K be an ordinary A-field with field of constants C = K.
Letny,...,n, € K. Then the n1,...,n, are linearly independent over C if and
only if det W(n) # 0.

Note that K is any A-field that contains the family n = (1,...,7,). In other
words, if the Wronskian determinant vanished then 7 is linearly dependent over
the constants of any A-field that contains n. We say simply that 7y,...,n, are
linearly dependent (or independent) over constants.

We can generalize the result slightly by replacing K by a A-integral domain
domain R. Then the vanishing of the Wronskian determinant implies that
N,---,Nn are linearly dependent over qf(R)®, which unfortunately is not the
same as qf (R?). If R is not an integral domain, there is little that we can say.

Example 1.12.4 Consider the following real valued functions.

—3 .

o le ifx#0
1 ifx=1
efx%, ifz >0

v =
1 ifz <1

w=1

These are C'*° functions which are not linearly dependent. However their Wron-
skian determinant is identically 0 on the entire real line. This does not contradict
our result since the ring of C* functions is not an integral domain.

For partial A-fields we need to consider many “Wronskians”. Kolchin (1973,
Theorem 1, p. 86) is a further generalization of the material presented here.
The first row of a Wronskian matrix is, as expected,

n= (- 7m)
But for the second row we have m choices:
011, 92m) . . . Oy ).
We also allow 7 (redundantly) to get m+ 1 = ("] 1) choices:
1, 011,027 ..., 0m1).

For the third row we have

n, (51’[’]7(527’]. . (5m7’],
5%77, 0102, ...,010mm,
5%77, 62537 cee 7626771777

62 1.

There are (m; 2) choices. And so on.
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Definition 1.12.5 By a order-restricted n-tuple (of derivative operators) we
mean an n-tuple of derivative operators 6 = (61,...,60,) where

ord 0; < 1, 1=1,...,n.

Thus ordf; = 0, so #; = 1, ordfs < 1, so 65 is one of 1,01,...,0.,, etc.
Another way of saying this is that

0; € @(’L — 1)

We define the Wronskian matrix using an arbitrary n-tuple of derivations,
however the important case is where it is order-restricted.

Definition 1.12.6 Let § = (64,...,0,) be an n-tuple of derivative operators.
By the Wronskian matriz of n with respect to 6 is meant the matrix

01771 e 917771
Wo(n) = Wa,,...0.(01,-.,0m) =

By the Wronskian determinant we mean the determinant of the Wronskian
matrix.

Proposition 1.12.7 Let K be a A-field and let C = K2, If y,...,n, € K
are linearly dependent over C then

det Wy(n) =0
for every n-tuple 6. Conversely, if
det Wy(n) =0

for every order-restricted n-tuple, then n1,...,n, are linearly dependent over

C.
Proof. Suppose first that
e+ -+ eann =0,

where ¢y, ...,c, € C are not all zero. Differentiate this equation successively to
get the vector equation

01m 017
al |+ o Al ¢ [ =0
6nn1 onnn

Thus the columns of the Wronskian matrix are linearly dependent so the Wron-
skian determinant is zero.
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Conversely, suppose that
det Wy(n) =0

for every order-restricted n-tuple 8 = (01,...,0,). If n = 1 this says that n; =0
which means that the family (n;) is linearly dependent over C' (even over Q).
We assume that n > 1 and that the proposition is proved for lesser values of n.
Therefore

for some order-restricted n — 1-tuple (61,...,0,-1)
Let 0 be any element of ©(n—1). Then (04, ...,60,_1,0) is an order-restricted
n-tuple and, by hypothesis,

det W91,..4,9n71 (7717 s ann—l) 7é 07

det W, .0, 1.0(n) =0.

In particular we may choose 8 = 030; for k = 1,...,m, i =1,...,n— 1. It
follows that the matrix

Oy 011
Hn_.l M .. 9n_.117n
0161m1 ... 016017,

(519n._1771 ...... (51971._177,1
Y Om01Mn
5m0,;,1771 ...... 5m9n.,117n

has rank no bigger than n — 1. Therefore the columns are linearly dependent
over K, i.e. there exist ay,...,a, € K, not all zero, with

> afm; =0, di=1,....n—1,
j=1

and
n
> aioplin; =0,  i=1,...m-1, k=1,..,m
j=1
However det Wy, .. o, (M, Mn—1) # 0, thus the column vectors

91ﬂ1 glnn—l

an—lnl on—lnn—l
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are linearly independent over K. We must have a, # 0. Because K is a field
we may assume that a,, = 1. We claim that each a; is in C.
Fori=1,...,.n—1and k=1,...,m, we have

n n—1 n
0= 5k<2aj9i77j> = Z Ora;0;n; + Zajéwmj
j=1 j=1 J=1

n—1

= 5kaj9mj.
1

J
It follows that dpa; =0for j=1,...,n—1land k=1,...,m. O
We use the contrapositive more than the above proposition.

Corollary 1.12.8 Let K be a A-field. If n1,...,n, € K are linearly indepen-
dent over K2, then there is an order-restricted n-tuple 6 such that

det Wy (n) # 0.

1.13 Results from ring theory

We end this chapter with a section that collects some result from ring theory
that we will be using, but that are not commonly studied today. In this section
k is a field (not necessarily a A-field).

Let R be an integral domain that is finitely generated over k. Then

trdeg R

denotes the transcendence degree of qf(R) over k. (See Zariski and Samuel
(1975, p. 100, bottom).

Proposition 1.13.1 Suppose that R and S are integral domains that are finitely
generated over k. If ¢: R — S is a surjective homomorphism over k then

trdeg S' < trdeg R.
If trdeg S = trdeg R then ¢ is an isomorphism.
Proof. Zariski and Samuel (1975, Theorems 28 and 29, p. 101). O

Corollary 1.13.2 Let R be an integral domain finitely generated over k. Then
every surjective endomorphism is an automorphism.
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