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Outline of the Talk

• Background

• Difference Ascending Chain

• Coherent and Regular Ascending Chain

• Irreducible Ascending Chain

• A Decomposition Algorithm

• Difference Resolvent System
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CS Method: An Example
The 4-cyclic equation system:

x4 + x3 + x2 + x1 = 0
x4 ∗ x3 + x3 ∗ x2 + x2 ∗ x1 + x1 ∗ x4 = 0
x4 ∗ x3 ∗ x2 + x3 ∗ x2 ∗ x1 + x2 ∗ x1 ∗ x4 + x1 ∗ x4 ∗ x3 = 0
x4 ∗ x3 ∗ x2 ∗ x1 − 1 = 0

Zero(P) = Zero(A1) ∪ Zero(A2)

A1 = {x1x4 − 1 = 0, x3 + x1 = 0, x1x2 + 1 = 0}
A2 = {x1x4 + 1 = 0, x3 + x1 = 0, x1x2 − 1 = 0}

The Solutions: x1 = a, x2 = −1
a
, x3 = −a, x4 = 1

a

x1 = a, x2 = 1
a
, x3 = −a, x4 = −1

a
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Ascending Chain: Algebraic Case

A =






A1(u1, . . . , uq, y1) = I1y
d1
1 + lower terms in y1

A2(u1, . . . , uq, y1, y2) = I2y
d2
2 + lower terms in y2

. . . . . .
Ap(u1, . . . , uq, y1, . . . , yp) = Ipy

dp
p + lower terms in yp

Number of Parameters q: Dimension of the solutions.

Leading Degree di: Number of the solutions.

Idea of CS: Use a minimal chain in an ideal, called CS,
to represent the whole ideal.

Saturation Ideal:

sat(A) = (A) : IA. IA = {J |, J =
∏n

i=1 Isi
i }
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Differential Algebra vs CS

In Differential Algebra founded by Ritt, CS plays the cen-
tral role.

1. If A is irreducible, then sat(A) is a prime ideal of
dimension dim(A).

2. For a d-polynomial set P, one can construct irreducible
chains Ai such that

Zero(P) = ∪iZero(sat(Ai))

3. Formal power series solutions for an irreducible chain
can be computed.

In the past 20 years, more efficient algorithms and impor-
tant applications for CS were found. (ISSAC04, ISSAC05)
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Difference Algebra vs CS

In Difference Algebra founded by Cohn, Difference Ker-
nel instead of CS plays the central role, which bridges the
difference case and the usual algebraic case.

Ritt and Doob defined the difference ascending chain and
used them to prove the Noertherian property of difference
perfect ideals.

Theories and algorithms for difference CS were basically
untouched.
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Difference Ascending Chain
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An Example

y(x): a function in x. Transform operator: Ex = x + 1

P = (y(x + 1)− y(x))2 − 2(y(x + 1) + y(x)) + 1 = 0

EP − P = P1P2

P1 = y(x + 2)− y(x),

P2 = y(x + 2)− 2y(x + 1) + y(x)− 2.

Zero(P ) = Zero(P, P1) ∪ Zero(P, P2)

Solutions:

A1 = P, P1, Solution: y = (c(x)eiπx + 1
2)

2

A2 = P, P2, Solution: y = (x + (c(x))2

c(x) is a periodic function: c(x + 1) = c(x).
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Difference Polynomials (r-pols)

Difference Field: a field with a transforming operation:

E(a + b) = Ea + Eb, E(ab) = Ea ·Eb, Ea = 0 ⇔ a = 0.

A Difference Field: K = Q(x) with Ef (x) = f (x+1).

Difference Polynomials: K{y1, . . . , yn} = K[Ekyj].

Notation: yi,j = Ejyi = yi(x + j).

A Canonical Representation:

P (y1, . . . , yp) = Idyp(x + o)d + Id−1yp(x + o)d−1 + . . . + I0

p = cls(P ), o = ord(P, yp), Id = init(P ), lead(P ) = yp,o.
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Compare with Differential Case

Differential Case: y(o): o−the derivative of y

P = Iyd
(o) + Id−1y

d−1
(o) + · · · + I0

P ′ = Sy(o+1) + U1

P ′′ = Sy(o+2) + U2

Linear in y(o+i), i > 0. Pivots: I and S.

Difference Case:

P = Iy(x + o)d + Id−1y(x + o)d−1 + · · · + I0

EP = EIdy(x + o + 1)d + · · · + EI0

E2P = E2Idy(x + o + 2)d + · · · + E2I0

Not-linear in y(x+o+i), i > 0. Pivots: EiI, i = 0, 1, 2, · · · .
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Difference Asc Chain

P is Difference Reduced wrt Q (lead(Q) = yp,o) if

deg(P, yp,o+i) < deg(Q, yi,o) for i ≥ 0.

Difference Asc Chain: Auto-reduced r-pol sequence

A =






A1,1(U, y1), . . . , A1,k1(U, y1)
A2,1(U, y1, y2), . . . , A2,k2(U, y1, y2)
. . .
Ap,1(U, y1, . . . , yp), . . . , A1,kp(U, y1, . . . , yp)

(1)

For yi: orders of Ai,j increase, leading degrees decrease.

Dimension: ord(A) = |U|
Order: ord(A) =

∑p
i=1 ord(Ai,1, yi)

Degree: deg(A) =
∏p

i=1 ldeg(Ai,ki)
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Extensions of Asc Chain

Extension of A: For integers hi ≥ 0

A(h1,··· ,hp) = A1,1,EA1,1, . . . ,E
o1,2−o1,1−1A1,1, A1,2,

. . . , A1,k1,EA1,k1, . . . ,E
ĥ1−o1,k1A1,k1

where oi,j = ord(Ai,j).

To fill the “gaps” and to make all the yi(oi,1 + k) appear.

A(h1,··· ,hp) is an algebraic triangular set.

Difference Pseudo Remainder:

rprem(P,A) = prem(P,A(ord(P,y1),··· ,ord(P,yp))
)
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Coherent and Regular Chain
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Coherent Asc. Chain

Example: A = A1, A2.

A1 = y(x + 1)2 − y2(x) + 1

A2 = y(x + 2) + y(x + 1)

EA1 − (y(x + 2) + y(x + 1))A2 = 1.

Need coherent even in ordinary difference case

Coherent Chain: A = A1, · · · , Am; oi = ord(Ai)

rprem(∆ij,A) = 0, (i < j), where

(1) if cls(Ai) = cls(Aj), ∆ij = prem(Eoj−oiAi, Aj, lvar(Aj)).

(2) otherwise, let ∆ij = 0.
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Regular Chain: Algebraic Case

P invertible wrt A: (P,A) ∩K[U] (= {0}
A is regular: Ii is invertible wrt Ai−1

Example. A1 = x2
1, A2 = x1x2 is not regular.

Saturation Ideal:

sat(A) = {P | ∃J ∈ IA, JP ∈ (A)}

Theorem. (Aubry-Lazard-Maza,99) The following
are equivalent

1. A is regular;

2. A is the characteristic set of sat(A).

3. sat(A) = {P | prem(P,A) = 0}.
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Regular Difference Chain

P Difference Invertible wrt A: P is algebraic invert-
ible wrt A(ord(P,y1),...,ord(P,yp))

.

Difference Regular: EiIj are invertible wrt A for all
i, j.

Theorem. A is the characteristic set of sat(A) iff A is
coherent and difference regular.

There is no algorithm to test difference regularity, yet.
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Key idea in the proof (1)
Canonical Representation:

Lemma. Let A = A1, . . . , Am be a coherent ascending
chain. Then

P ∈ sat(A) ⇒ JP =
∑

i,j Qi,jE
iAi

(1) Leads of EiAi are different

(2) EiAi has the lowest leading degree

A(h1,··· ,hp) = A1,EA1, . . . ,E
o2−o1−1A1 same degree

A2,EA2, . . . ,E
o3−o2−1A2 lower degree

where oi = ord(Ai, y1).
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Key idea in the proof (2)

A modified Rosenfeld lemma:

Lemma. Let A be a coherent and regular chain, and R
an r-pol reduced wrt A. If R ∈ sat(A), then R = 0.

R ∈ sat(A) ⇒ JR =
∑

i,j Qi,jE
iAi

Eliminate EiAi: Due to the regularity and coherency

If EsAi = EsIdy(x + o + s)d − U

Replace y(x + o + s)d by U/(EsId).

J ′R =
∑

i,j Q′
i,jE

iAi with lower order.
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Irreducible Chain
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Strong Irreducible Chain

P is effective in yi: deg(P, yi(x)) (= 0

P = y1(x + 1)y2(x + 2)2 − 1 = EQ,

Q = y1(x)y2(x + 1)2 − 1.

Zero(P ) = Zero(Q).

A is strong irreducible:

• A(h1,...,hm) is algebraic irreducible for hi ≥ 0;

• Ac,1 is effective in yc;

• Ac,1 is irreducible and effective module Ac−1.

Irreducible and effective in K(ηc−1)[yc(x), . . . , yc(x +
fc)], where fc = ord(Ac,1, yc), Bc = A(0,...,0)∩K{U, y1, . . . , yc},
and ηc is a generic point for the algebraic irreducible
chain Bc.



21/40

�

�

�

�

�

�

�

CS of Reflexive Prime Ideals

Difference Ideal: P ∈ I ⇒ EP ∈ I .

Reflexive Ideal: EP ∈ I ⇒ P ∈ I .

Theorem. Let A be a coherent and strong irreducible
chain. Then sat(A) is a reflexive prime difference ideal.

Conversely, let I be a reflexive prime difference ideal. We
may choose a proper order of variables such that among
the CSs of I , there exists one A which is coherent and
strong irreducible, and I = sat(A).

Example. A = y2(x + 1)− y1(x): effective in y1 but not
in y2.

There is no algorithm to test strong irreducibility, yet.



22/40

�

�

�

�

�

�

�

Constructive Results

Proper Irreducible Chain: In the definition of strong
irreducible chain, replace the irreducibility of A(h1,··· ,hp)
with that of A(0,··· ,0).

Algorithm exists to test proper irreducibility.

Main Theorem. A is coherent and proper irreducible
⇒ A is difference regular.

Key facts in the proof.

Lemma. If P is invertible wrt. A, then EP is invertible
wrt A.

Lemma. If P ∈ K[V ] where V is the parameter set of
A(0,...,0), then EP is invertible wrt A.
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Proper Irreducible Chain is Non-
Trivial

Theorem. A is coherent and proper irreducible⇒ Zero(A/J) (=
∅.

Zero(A/J) = Zero(A)− Zero(J)

Zeros are taken in a universal extension system F.
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Proper Irreducible Chain is Un-
mixed
Theorem. Let A be a coherent and proper irreducible
chain, and

{sat(A)} =
r⋂

i=1

Pi =
r⋂

i=1

sat(Ai)

is an irredundant intersection of prime ideals. Then

(1) U is the parameter set of Ai. dimPi = dimA.

(2) ordUPi = ordAi = ordA.

(3) deg(A) =
∑r

i=1 deg(Ai).
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Difference Asc Chain

Difference Asc Chain:

A =






A1,1(U, y1), . . . , A1,k1(U, y1)
A2,1(U, y1, y2), . . . , A2,k2(U, y1, y2)
. . .
Ap,1(U, y1, . . . , yp), . . . , A1,kp(U, y1, . . . , yp)

(2)

For yi: orders of Ai,j increase, leading degrees decrease.

Dimension: ord(A) = |U|
Order: ord(A) =

∑p
i=1 ord(Ai,1, yi)

Degree: deg(A) =
∏p

i=1 ldeg(Ai,ki)
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Example

Example: A = (y(x+1)−y(x))2−2(y(x+1)+y(x))+1.

EA− A = A1 · A2

A1 = y(x + 2)− y(x),

A2 = y(x + 2)− 2y(x + 1) + y(x)− 2.

{sat(A)} = sat(A1) ∩ sat(A2)

Strong irreducible ascending chains:

A1 = A, y(x + 2)− y(x)

A2 = A, y(x + 2)− 2y(x + 1) + y(x)− 2



27/40

�

�

�

�

�

�

�

Key Fact in the Proof
Difference Kernel: Let D be a difference field. A dif-
ference kernel R overD is an extension field, D(a, a1, . . . , ar), r ≥
1, of D, each ai denoting a vector (a(1)

i , . . . , a(n)
i ), and an

extension τ of E to an isomorphism of

D(a, a1, . . . , ar−1) ⇒ D(a1, . . . , ar)

such that τai = ai+1, i = 0, 1, . . . , r − 1. (a0 = a.)

Lemma (Cohn). Let R be a difference kernel. Then there
exists a finite number of principal realizations for R. The
sum of the limit degrees of these principal realizations is
the limit degree of R.

Cohn used the above result to obtain zero decomposition
for a single r-pol. Our result on proper chain could be
considered a generalization to the general case.
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A Decomposition Algorithm
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A Zero Decomposition Theorem
Theorem. Let P = {P1, . . . , Pr}. Then we can find
coherent and proper irreducible ascending chains Ai s.t.

Zero(P) =
⋃

i

Zero(sat(Ai)).

Zero(P) =
⋃

i

Zero(Ai/Ji).

Applications:

(1) Automated theorem proving of theorems about differ-
ence equations.

(2) A new method to test radical ideal membership.
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An Example
Fibonacci Numbers:

Fn: Fn+2 − Fn+1 − Fn = 0, F0 = 0, F1 = 1.

Cassini Identity: Fn+2Fn − F 2
n+1 = (−1)n+1

Let P = {P1, P2, P3}.
P1 = Fn+2 − Fn+1 − Fn

P2 = an+1 + an, a0 = 1 (represent (−1)n)

P3 = hn − (Fn+2Fn − F 2
n+1 + an)

Under the variable order hn < an < Fn

Zero(P) = Zero(sat(A))
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Zero(P) = Zero(sat(A)) = Zero(A)

A =






hn+1 + hn

an+1 + an

−Fn+1
2 + FnFn+1 + Fn

2 − hn + an

Fn+2 − Fn+1 − Fn

hn satisfies a first order difference equation

Check initial values: h0 = F2F0 − F 2
1 + a0 = 0

hi = 0 for all i.

Using linear algebra method: hn satisfies:

hn+3 − 2 hn+2 − 2 hn+1 + hn.
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Resolvent Systems of Difference Ideals
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The Idea of Resolvent
P: a polynomial set in x1, . . . , xn.

w =
∑

i cixi: a linear transformation.

Then Zero(P) is given by:

R(w) = 0, x1 = R1(w), . . . , xn = Rn(w)

Applications of Resolvents: Primitive elements, fac-
torization, QE, etc.

Difference Resolvents: (Cohn, DA)

For a reflexive prime ideal I , after certain linear transfor-
mation, Iiyi,mi−Vi ∈ I where mi is a non negative integer.
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Resolvent system of a strong ir-
reducible chain

Theorem. Let A be a coherent and strong irreducible
chain.

There exists σ1, . . . , σpsuch that the CS of sat(A, w −∑p
i=1 σiyi) under the variable order U < w < yi is of the

following form

R,R1, . . . , Rs, I1y1,0 − V1, . . . , Ipyp,0 − Vp

where R,Ri, Ii, Vi ∈ K{U, w}.
Furthermore, R is effective in w and ord(R,w) = ord(A).

Resolvent Ideal: sat(R,R1, . . . , Rs).

Resolvent System: R,R1, . . . , Rs.
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Birational Equivalence

Corollary: Any irreducible difference variety V is bira-
tionally equivalent to an irreducible difference variety of
codimension one.

Let W = Zero(sat(R,R1, . . . , Rs)). The rational maps
are defined as follows:

M1 : V ⇒ W ; (U, y1, . . . , yp) ⇒ (U,
p∑

i=1

σiyi)

M2 : W ⇒ V ; (U, w) ⇒ (U,
V1(U, w)

I1(U, w)
, . . . ,

Vp(U, w)

Ip(U, w)
).
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Size of the Resolvent System

Theorem. Let A be a coherent and strong irreducible
chain, o = ord(A), and m = max

i
ord(Ai,j, yi). Then in

the resolvent system

R,R1, . . . , Rs

we have s ≤ o + m.

Algorithms for the Resolvent Systems:

B = A(o+m), w0 −
∑

λi,0yi0, . . . , wo+m −
∑

λi,o+myi,o+m

Then a CS of a-sat(B) under the variable order ui, λi,j, <
wi, yi if of the following form:

R,R1, . . . , Rm; P1, . . . ; P2, . . . ; . . . ; Pp, . . .
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Example

A = {y2
1 + x, y2

2,1 + y2
2 + 1, y2,2 − y2}.

Let w = y1 + y2.

Using the difference CS method (w < y1 < y2), we have :

Zero(sat(A, w − y1 − y2))
= Zero(A ∪ {w − y1 − y2}) = Zero(sat(B1))

where B1 is:
R = w8

1 + (8 + 4w2)w6
1 + (16w2 + 6w4 + 8x2 + 16)w4

1 + (4w6 + 8w4 + 32x2 −
48w2x2 − 64w2x)w2

1 +w8 + 8w4x2 + 16x4,

R1 = (2w2
1w+2w3−4wx)w2

2 +(−2w2
1w

2 +w4
1−3w4 +4w2

1 +4x2)w2 +4w3 +
w5 − 8wx− ww4

1 + 4xw3 − 4wx2,

P1 = (−4w3 − 4w2
1w + 8wx)y1 + 4w2

1 + 2w2
1w

2 + w4 + w4
1 − 8w2x + 4x2,

P2 = (−8wx + 4w2
1w + 4w3)y2 − 3w4 − 2w2

1w
2 + 4w2

1 + w4
1 + 4x2.

{R,R1} is a resolvent system for sat(A).
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Example: Proper Irreducible Chain

A = {y2
1 + x, y2

2,1 + y2
2 + 1}.

Let w = y1 + y2.

Using the difference CS method, we have:

Zero(sat(A, w − y1 − y2)) = Zero(A ∪ {w − y1 − y2})
= Zero(sat(B1)) ∪ Zero(sat(B2))

B1 = R,R1, P1, P2

B2 = {R,R′
1, P1, P2}, where R′

1 = (−2w2
1w − 2w3 +

4wx)w2
2 + (−2w2

1w
2 + w4

1 − 3w4 + 4w2
1 + 4x2)w2.

{R,R1} and {R,R′
1} are the resolvent systems for sat(A).
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A Condition for Resolvent
K is an aperiodic difference field or |U| (= 0.

In this case, for any P ∈ K{U, y1, . . . , yp}, there exist αi

such that P (U, α1, . . . , αp) (= 0.
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Thanks!

The results are joint work with Yong Luo and
Chunming Yuan


