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Definition 1. Let Y ⊆ Pn be a quasi-projective variety. A function f : Y → k
is regular at a point P ∈ Y if there is an open neighborhood U with P ∈ U ⊆ Y ,
and homogeneous polynomials g, h ∈ k[x0, ..., xn], of the same degree, such that
h is nowhere zero on U , and f = g/h on U .

Definition 2. If X is a variety, we define the function field K(X) of X as
follows, an element of K(X) is an equivalence class of pairs < U, f > where U
is a nonempty open subset of X and f is a regular function on U , and where
we identify two pairs < U, f > and < V, g > if f = g on U ∩ V . The elements
of K(X) are called rational functions on X.

It’s much easier if we just describe the function field of a projective variety
V as the field of rational functions F (X) = f(X)

g(X) such that:

(a) f and g are homogeneous polynomials of the same degree.

(b) g /∈ I(V ).

(c) Two functions f
g and f ′

g′ are identified if fg′ − f ′g ∈ I(V ).

Consider the variety C, a smooth projective curve. The ”valuation” on k(C)
is the function

ordP : k(V ) → Z

where P ∈ C. If F ∈ k(C) then ordP (F ) takes the value of the order of the
zero of F at P if f has a zero at P , the negative of the order of the pole of f at
P if f has a pole at P and takes the value zero otherwise.

We then define an absolute value on k(C) for each P ∈ K(V ) by setting
|f |P = e−ordP (F ) This is a nonarchimedean absolute value because

(a) ordP (FG) = ordP (F ) + ordP (G)

(b) ordP (F +G) ≥ min{ordP (F ), ordP (G)}
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Using this we have
| · |P : k(C) → [0,∞)

with the following three properties:

(1) |x|P = 0 if and only if x = 0.

(2) |xy|P = |x|P · |y|P .

(3) |x+ y|P ≤ |x|P + |y|P .

and more importantly we always have

(3’) |x+ y|P ≤ max{|x|P , |y|P }.

If C is a smooth projective curve we have a product rule on k(C) as well.

Theorem 3. (Product Rule 3) ∏
P∈C

|F |P = 1

Proof. ∏
P∈C

|F |P =
∏
P∈C

e−ordP (F )

= e−
P

P∈C ordP (F )

Since we are considering F = f/g where f and g are homogeneous polynomials of
the same degree, F has the same number of poles and zeros counting multiplicity
so ∑

P∈C
ordP (F ) = 0.

Therefore ∏
P∈C

|F |P = e0 = 1.

Because the whole theory of developing a well defined height on Pn over
a number field depended on the ”product rule.” We can make the same exact
construction of a function field minus the ”boundedness” property.

The boundedness property fails because if we consider K = k(C) over an
infinite base field and consider constant functions each additive height will be
equal to zero. But in this case there are an infinite amount of these.

We can define the height of a point Q = (f0, ..., fn) ∈ Pn over K = k(C) as

h(Q) =
∑
P∈C

log max{|f0|P , ..., |fn|P }

2



Now if we take a brief aside to try to at least sketch the proof of the basic
theorems to create the Weil height machine. Which will work for a variety over
a function field because the construction just depends on the construction of
height for points in Pn

Definition 4. Let X be an algebraic variety, the group of Weil Divisors on
X denoted Div(X) is the free abelian group generated by the closed subvarieties
of codimension one on X.

Weil Divisors are of the form

D =
∑

nY Y

where Y is a closed subvariety of codimension one of X and all but finitely many
nY ’s are nonzero.

Example 5. If X is a curve the group of Weil Divisors is the free group gen-
erated by the points of X.

If X is a surface the group will be the free group generated by the irreducible
curves in X.

Definition 6. Let X be a variety, and let f ∈ k(X)∗ be a rational function on
X. The divisor of f denoted div(f) or just (f) is the divisor

div(f) =
∑
Y

ordY (f)Y ∈ Div(X).

A divisor is principal if it can be written as a divisor of a rational function.
A divisor is said to be effective or positive if for every nY ≥ 0.
The support of a divisor D =

∑
nY Y is the union of Y ’s such that the

associated nY are not zero.
Two divisors are said to be linearly equivalent, written D ∼ D′, if D−D′ is

a principal divisor.

A small description of where linear equivalence comes from suppose that
D ∼ D′ we say D′ = D + div(f). For each point in (a, b) ∈ P1, define the
divisor D(a,b) = D+div(a+ bf). Then the divisors D(1,0) = D and D(0,1) = D′.
So there is a family of divisors parameterized by points of a line, that deforms
D to D′.

Definition 7. For each divisor D on a variety X we have and associated vector
space

L(D) = {f ∈ k(K)∗|D + div(f) ≥ 0} ∪ {0}

The set of effective divisors linearly equivalent to D is a linear system called
the complete linear system associated to D. It is denoted by |D|

If X is projective then L(D) is finite dimensional with dimension l(D).
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Definition 8. Let L be a linear system of dimension n parameterized by a
projective space P(V ) ⊂ P(L(D)). Select a basis f0, ..., fn of V ⊂ L(D). The
rational map associated to L, denoted by φL is the map

φ : X → Pn

x 7→ (f0(x), ..., fn(x)).

A linear system L on a projective variety X, is very ample if the associated
rational map φL : X → Pn is an embedding, that is φL is a morphism that
maps X isomorphically onto its image φL.

The divisor D is said to be very ample if the complete linear system |D| is
very ample. A divisor D is said to be ample if some positive multiple of D is
very ample.

The sum of two very ample divisors is very ample and every divisor can be
written as the difference of two (very) ample divisors.

Proposition 9. Let

Sn,m : Pn × Pm → PN

(x, y) 7→ (x0y0, x0y1, ..., xiyj , ..., xnym).

where N = (n+ 1)(m+ 1)− 1. Let Hn, Hm and HN be hyperplanes in Pn, Pm
and PN respectively.

(a) S∗n,m(HN ) ∼ Hn × Pm + Pn ×Hm ∈ Div(Pn × Pm).

(b) h(Sn,m(x, y)) = h(x) + h(y) for all x ∈ Pn(Q) and y ∈ Pm(Q).

(c) Let the map

Φd : Pn → PN

x 7→ (M0(x), ...,MN (x))

be the d-uple embedding. (i.e. N = (
(
n+d
n

)
)−1 and the collection M0(x), ...,MN (x)

is the complete collection of monomials of degree d in the variables x0, ..., xn.)
Then

h(Φd(x)) = dh(x) for all x ∈ Pn(Q).
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Proof. (a) Let (z0, ..., zN ) be homogeneous coordinates on PN , and fix hyper-
planes HN = z0 = 0, Hn = x0 = 0 and Hm = y0 = 0. Then

S∗n,m(HN ) = S∗n,m{z ∈ PN |z0 = 0}
= {(x, y) ∈ Pn × Pm|x0y0 = 0}
= Hn × Pm + Pn ×Hm.

(b) Let x ∈ Pn(k) and y ∈ Pm(k) for some number field k, and let z ∈
Sn,m(x, y). Then for any absolute value v ∈Mk we have

max
0≤l≤N

|zl|v = max
0≤i≤n
0≤j≤m

|xiyj |v

= ( max
0≤i≤n

|xi|v)( max
0≤j≤m

|yj |v).

Now raise to the appropriate power and multiply over all v and take the log to
get the appropriate result.

(c)It’s pretty close to clear that

|Mj(x)|v ≤ max
0≤i≤n

|xi|dv.

Since the particular monomials xd0, ..., x
d
n appear in the list

max
0≤j≤N

|Mj(x)|v = max
0≤i≤n

|xi|dv.

Now raise take the appropriate power and multiply over all v and take the log
to finish the proof.

Theorem 10. Let φ : Pn → Pm be a rational map of degree d definied over Q,
so φ is given by a (m+1)-tuple φ = (f0, ..., fm) of homogeneous polynomials of
degree d. Let Z ⊂ Pn be the subset of common zeros of the fi’s. Notice that
Pn\Z.

(a) We have

h(φ(P )) ≤ dh(P ) +O(1) for all P ∈ Pn(Q)\Z.

(b) Let X be a closed subvariety of Pn with the property that X∩Z = ∅. (Thus
φ defines a morphism X → Pm.) Then

h(φ(P )) = dh(P ) +O(1) for all P ∈ X(Q)
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Corollary 11. Let A : Pn → Pm be a linear map defined over Q. In other
words, A is given by m+ 1 linear forms (L0, ..., Lm). Let Z ⊂ Pn be the linear
subspace where L0, ..., Lm simultaneously vanish, and let X ⊂ Pn be a closed
subvariety with X ∩ Z = ∅. Then

h(A(P )) = h(P ) +O(1) for all P ∈ X(Q).

Proof. Fix the field of definition k for φ, so

φ = (f0, ..., fm)with f0, ..., fm ∈ k[x0, ..., xn]d.

(i.e., the fi’s are homogeneous polynomials of degree d.) Write the fi’s explicitly
as

fi(X) =
∑
|e|=d

ai,eX
e,

where e = (e0, ..., en) and |e| = e0, ..., en, and Xe = Xe0
0 ...Xen . Notice the sum

as
(
n+d
n

)
terms, which is the number of monomials of degree d in n+1 variables.

For any point P = (x0, ..., xn) with xj ∈ k and ny absolute value value
v ∈ Mk, we will write |P |v = max{|xj |v}. Similarly, for any polynomial f =∑
aeX

e ∈ k[X] we will let |f |v = max{ae}. We also set the notation

εv(r) = { r if v is archimedean,
1 if v is nonarchimedean.

With this notation, the triangle inequality can be written uniformly as

|a1 + ...+ ar|v ≤ ε(r) max{|a1|v, ..., |ar|v}.

Now consider any point P ∈ Pn(Q). Extending k if necessary, we may
assume that P ∈ Pn(k) and write P = (x0, ..., xn) with xi ∈ k. Then for any
v ∈Mk and any i we have

|fi(P )|v =

∣∣∣∣∣∣
∑
|e|=d

ai,ex
e

∣∣∣∣∣∣
v

≤ εv

(
n+ d

n

) (
max
e
|ai,e|v

) (
max
e
|xe00 · · ·xen

n |v
)

≤ εv

(
n+ d

n

)
|fi|v max

e,j
|xj |e0+···+en

= εv

(
n+ d

n

)
|fi|v|P |dv.

Now take the maximum over 0 ≤ i ≤ m, raise to the appropriate power, and
multiply over all v ∈Mk. This gives

H(φ(P )) ≤
(
n+ d

n

)
H(φ)H(P )d,
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where
H(φ) =

∏
v∈Mk

max{|f0|v, ..., |fm|v}nv/[k:Q].

and making use of the identity∏
v∈Mk

εv(r)nv =
∏

v∈M∞
k

rnv = r[k:Q],

which follows from the degree formula (
∑
nv = [k : Q]).

Taking log’s we get

h((φ(P )) ≤ dh(P ) + h(φ) + log
(
n+ d

n

)
,

which proves (a).
(b)To get the other side of the inequality, we need to use the fact that

we are choosing points in X and that φ is a morphism on X. Let p1, ..., pr
be homogeneous polynomials generating the ideal of X. Then we know that
p1, ..., pr, f0, ..., fm have no common zeros in Pn. The Nullstellensatz tells us
that the ideal they generated has a radical equal to the ideal generated by
X0, ..., Xn. This means that we can find polynomials gij , qij (which we may
assume are homogeneous) and an exponent t ≥ d such that

g0jf0 + · · ·+ gmjfm + q1jp1 + · · ·+ qrjpr = Xt
j for 0 ≤ j ≤ n.

Notice that the gij ’s are homogeneous of degree t−d, since the fi’s are homoge-
nous of degree d. Extending to k if necessary, we may also assume that the
gij ’s and the qij ’s have coefficients in k. Now let P = (x0, ..., xn) ∈ X(k). The
assumption that P ∈ X implies that pi(P ) = 0 for all i, so we can evaluate the
above formula at P and obtain

g0j(P )f0(P ) + · · ·+ gmj(P )fm(P ) = xtj , 0 ≤ j ≤ n.

Hence

|P |tv =
= max

j
|g0j(x)f0(x) + g1j(x)f1(x) + · · ·+ gmj(x)fm(x)|v

≤ εv(m+ 1)
(

max
i,j

|gij(x)|v
) (

max
i
|fi(x)|v

)
≤ εv(m+ 1)

[
ε

(
t− d+ n

n

) (
max
i,j

|gij(x)|v
]
|P |t−dv

]
·
(
max
i
|fi(x)|v

)
.

Now raise to the appropriate power and multiply over all v ∈Mk to get

H(P )t ≤ cH(P )t−dH(φ(P )),
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where c is a certain constant depending on the fi’s, the gij ’s and t, but inde-
pendent of P . In other words, c depends on φ and X. Taking logarithms gives
us the desired inequality

dh(P ) ≤ h(φ(P )) +O(1).

This completes the proof and the corollary follows.

Definition 12. Let φ : V → Pn be a morphism. The (absolute logarithmic)
height on V relative to φ is the function

hφ : V (Q) → [0,∞), hφ(P ) = h(φ(P )),

where h : Pn(Q) → [0,∞) is the height function on projective space defined
earlier.

Theorem 13. Let V be a projective variety defined over Q, let φ : V → Pn and
ψ : V → Pm be morphisms, and let H and H ′ be hyperplanes in Pn and Pm
respectively. Suppose that φ∗H and ψ∗H ′ are linearly equivalent. Then

hφ(P ) = hψ(P ) +O(1) for all P ∈ V (Q).

Here the O(1) constant will depend on V, φ and ψ, but independent of P .

Proof. Let D ∈ Div(V ) be any positive divisor in the linear equivalence class of
φ∗H and ψ∗H ′. The morphisms φ and ψ are determined by certain subspaces
W and W ′ in the vector space L(D) and the choice of bases for W and W ′.
In other words, if we chose h0, ..., hN as a basis for L(D), then there are linear
combinations

fi =
N∑
j=0

aijhj , 0 ≤ i ≤ n,

gi =
N∑
j=0

bijhj , 0 ≤ i ≤ m,

such that φ and ψ are given by

φ = (f0, ..., fn) and ψ = (g0, ..., gm)

where the aij ’s and bij ’s are constants.
Let λ = (h0, ..., hN ) : V → PN be the morphism corresponding to the

complete linear system determined by D. Let A be the linear map A : PN → Pn
defined by the matrix (aij) and similarly let B : PN → Pm be defined by (bij).
Then we have commutative diagrams

V
φ

  B
BB

BB
BB

B
λ // PN

A

��
Pn

V
ψ

  B
BB

BB
BB

B
λ // PN

B

��
Pm
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The vertical maps A and B are not morphisms on all of PN , but the fact
that φ and ψ are morphisms associated to the linear system L(D) implies that
A is defined at every point of the image λ(V (Q), and similarly for B. Hence we
can apply the previous corollary so that

h(A(Q)) = h(Q) +O(1) and h(B(Q)) = h(Q) +O(1) for all Q ∈ λ(V (Q).

Letting Q = λ(P ) with P ∈ V (Q and by using the commutative diagram

h(φ(P )) = h(A(λ(P )))
= h(λ(P )) +O(1)
= h(B(λ(P ))) +O(1)
= h(ψ(P )) +O(1).

Theorem-Definition 14. (Weil’s Height Machine) Let k be a number field.
For every smooth projective variety V/k there exists a map

hV : Div(V ) → {functions V (k) → R}

with the following properties

(a) (Normalization)Let H ⊂ Pn be a hyperplane, and let h(P ) be the absolute
logarithmic height on Pn. Then

hPn,H(P ) = h(P ) +O(1) for all P ∈ Pn(k).

(b) (Functorality)Let φ : V →W be a morphism and let D ∈ Div(W ). Then

hV,φ∗D(P ) = hW,D(φ(P )) +O(1) for all P ∈ V (k).

(c) (Additivity) Let D,E ∈ Div(V ). Then

hV,D+E(P ) = hV,D(P ) + hV,E(P ) +O(1) for all P ∈ V (k).

(d) (Uniqueness)The height functions hV,D are determined, up to O(1), by
normalization, functoriality just for embeddings φ : V ↪→ Pn, and additiv-
ity.

(e) (Linear Equivalence)Let D,E ∈ Div(V ) with D linearly equivalent to E.
Then

hV,D(P ) = hV,E(P ) +O(1) for all P ∈ V (k).

(f) (Positivity)Let D ∈ Div(V ) be an effective divisor, and let B be the base
locus of the linear system |D|. Then

hV,D(P ) ≥ O(1) for all P ∈ (V \B)(k).

9



(g) (Algebraic Equivalence) Let D,E ∈ Div(V ) with D ample and E alge-
braically equivalent to 0. Then

lim
hV,D(P )→∞

hV,E(P )
hV,D(P )

= 0 where P ∈ V (k)

(h) (Finiteness)Let D ∈ Div(V ) be ample. Then for every finite extension
k′/k and every constant B, the set

{P ∈ V (k′)|hV,D(P ) ≤ B}

is finite.

Proof. We start with the construction: For every very ample every divisor D ∈
Div(V ) choose the morphism

φD : V → Pn

associated to D and L(D). Define

hv,D(P ) = h(φD(P )) for all P ∈ V (k)

Next for every other divisor D ∈ Div(V ) we write D = D1 −D2 where D1 and
D2 are divisors whose linear system has no base points. Then we define

hv,D(P ) = hv,D1(P )− hv,D2(P ) for all P ∈ V (k)

This gives us a height function for every divisor D on every variety V .
Claim:The height functionhV,D associated to a very ample divisor D is in-

dependent of of morphism φD, up to O(1).
Let ψ : V → Pm be another morphism associated to D. Then

φ∗H ∼ ψ∗H ′ ∼ D

where H and H ′ are hyperplanes in Pn and Pm respectively. By our previous
theorem

h(φD(P )) = h(ψD(P )) +O(1) for all P ∈ V (k).

Therefore through very ample divisors we can use the associated morphism
to compute the height, proving our claim.

Next we check the additivity property (c) for very ample divisors.
Let D and E be very ample divisors with their associated morphisms φD :

V → Pn and φE : V → Pm. Composing the product

φD × φE : V → Pn × Pm

with Segre embedding Sn,m we get the morphism

φD ⊗ φE : V → PN N = (n+ 1)(n+m)− 1
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φD ⊗ φE(P ) = Sn,m(φD(P ), φE(P ))

This morphism is associated to the divisor D + E. That is

(φD ⊗ φE)∗H ∼ D + E

(by a previous theorem.) From the above arguments we can compute the height
for a very ample divisor by using the associated morphism. So

hV,D+E(P ) = h((φD ⊗ φE)(P )) +O(1)

Now by the previous theorem about the Segre embedding

hV,D+E(P ) = h((φD ⊗ φE)(P )) +O(1)
= h((Sn,m(φD(P ), φE(P )))(P )) +O(1)
= h(φD(P )) + h(φE(P )))(P )) +O(1)
= hV,D(P ) + hV,E(P ) +O(1)

This gives us (c) for very ample divisors.
We can write any divisor D as the difference of very ample divisors. Suppose

we have two decompositions for a divisor D

D = D1 −D2 = E1 − E2

Then D1 + E2 = E1 + E2 and hence

hV,D1 + hV,E2 = hV,D1+E2 +O(1)
= hV,E1+D2 +O(1)
= hV,E1 + hV,D2 +O(1)

Therefore hV,D1 − hV,D2 = hV,E1 − hV,E2 +O(1).
Now check (a) and (b).
If H is a hyperplane in Pn, then the identity map Pn → Pn, P 7→ P , is

associated to H giving (a).
To verify (b), we write D ∈ Div(W ) as the difference of very ample divisors

D = D1−D2. Let φD1 and φD2 be the corresponding morphisms into projective
space. Then φ∗D1 and φ∗D2 are very ample, with associated morphisms φD1 ◦φ
and φD2 ◦ φ respectively. Hence

hV,φ∗D = hV,φ∗D1 − hV,φ∗D2 +O(1)
= h ◦ φD1 ◦ φ− h ◦ φD2 +O(1)
= hW,D1 ◦ φ− hW,D2 ◦ φ+O(1)
= hW,D ◦ φ
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Now we check property (c) which we already know for very ample divisors.
Let D and E be two divisors and write them as the difference of two very ample
divisors, D = D1 −D2 and E = E1 −E2. Then D1 +E1 and E2 +D2 are very
ample and we compute

hV,D+E = hV,D1+E1 − hV,D2+E2 +O(1)
= hV,D1 + hE1 − hV,D2 − hV,E2 +O(1)
= hV,D + hE +O(1)

This completes the proof of (c)
By proving (a), (b) and (c) using the fact than any divisor can be written

as the difference of two very ample divisors, we have proven (d).
Now to prove linear equivalence (e). Suppose D and E are linearly equiva-

lent. Write D = D1 −D2 and E = E1 − E2 as the sum of very ample divisors.
We have D1 + E2 ∼ E1 +D2. This means the morphisms φD1+E2 and φE1+D2

are associated to the same linear system. By our previous theorem

h(φD1+E2(P )) = h(φE1+D2(P )) +O(1).

Using this equality and additivity we get

hV,D1 + hV,E2 = hV,D1+E2 +O(1) = hV,D2+E1 +O(1) = hV,D2 + hV,E1 +O(1)

Hence

hV,D = hV,D1 − hV,D2 +O(1) = hV,E1 − hV,E2 +O(1) = hV,E +O(1)

which proves (d).

Corollary 15. Let V/k be a smooth variety defined over a number field, let
D ∈ Div(V ), and let φ : V → V be a morphism. Suppose that φ∗D ∼ αD for
some n ≥ 1. Then there exists a constant C such that

|hV,D(φ(P ))− αhV,D(P )| ≤ C for all P ∈ V (k).

Note 1. The O(1) here is dependent on the variety, divisor and morphism but
not the points. It is possible to compute the hV,D’s explicitly and to give bounds
of O(1) in terms of the defining equations the varieties, divisors and morphisms.
However, it is difficult in practice to bound the O(1)’s.

Theorem-Definition 16. (Neron, Tate) Let V/k be a smooth variety defined
over a number field, let D ∈ Div(V ), and let φ : V → V be a morphism.
Suppose that φ∗D ∼ αD for some n ≥ 1. Then there exists a unique function,
called the canonical height on V relative to φ and D,

ĥV,φ,D : V (k) → R

with the following two properties:
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(i) ĥV,φ,D(P ) = hV,D(P ) +O(1) for all P ∈ V (k).

(ii) ĥV,φ,D(φ(P )) = αĥV,φ,D(P ) for all P ∈ V (k).

The canonical height depends only on the linear equivalence class of D.
Further, it can be computed as the limit

ĥV,φ,D(P ) = lim
n→∞

hV,D(φn(P ))
αn

,

where φn is the n-th iterate of φ.

Proof. By the previous corollary there exists a constant C such that

|hV,D(φ(Q))− αhV,D(Q)| ≤ C for all Q ∈ V (k).

Now take a any point P ∈ V (k). We prove the sequence {α−nhV,D(φn(P ))}
converges by showing it is Cauchy. Take n ≥ m and

|α−nhV,D(φn(P ))− α−mhV,D(φm(P ))|

= |
n∑

i=m+1

α−ihV,D(φi(P ))− αhV,D(φi−1(P ))|

by a telescoping sum. Then

≤
n∑

i=m+1

|α−i|hV,D(φi(P ))− αhV,D(φi−1(P ))|

by the triangle inequality. Then

≤
n∑

i=m+1

α−iC

from above and Q = φi−1P . Then

≤ (
α−m − α−n

α− 1
)C.

This quantity goes to 0 as n > m → ∞, which proves the sequence is Cauchy,
hence converges. So we can define the ĥV,φ,D(P ) to be the limit

ĥV,φ,D(P ) = lim
n→∞

hV,D(φn(P ))
αn

.

To verify property (i), take m = 0 and let n → ∞ in the inequality above.
This gives

|ĥV,Q,D(P )− hV,D(P )| ≤ C

α− 1
,
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which gives us the desired inequality.
Property (ii) follows directly from the limit definition of canonical height.

ĥV,φ,D(φ(P )) = lim
n→∞

hV,D(φn(φ(P )))
αn

= lim
n→∞

αhV,D(φn+1(P ))
αn+1

= αĥV,φ,D(P ).

What’s left to prove is uniqueness. Let ĥ and ĥ′ be two functions with
properties (i) and (ii). Let g = ĥ− ĥ′. Then (i) implies that g is bounded, say
|g(P )| ≤ C ′ for all P ∈ V (k). While (ii) says that g ◦ φ = αng for all n ≤ 1.
Hence

|g(P )| = g(|φn(P ))|
αn

≤ C ′

αn

where C′

αn → 0 as n→ 0. This says that g(P ) = 0 for all P , so ĥ = ĥ′.

Okay, now that that is done.
Another way to look at varieties over function fields is as follows.
Consider the smooth projective variety V/k over k, a number field, and a

sooth projective curve C/k with a morphism π : V → C over k whose generic
fiber is smooth. We can think of the generic fiber V of V as a variety over a
function field K = k(C).

Let φ : V → V be a rational map over k that commutes with π and is a
morphism on the generic fiber. Let C0 be the subset of C having ”good fibers”

C0 = {t ∈ C|Vt = π−1(t) is smooth andφt : Vt → Vt is amorphism}

Example 17. (Elliptic Surfaces) Let E be a smooth two dimensional projective
variety with a morphism

π : E → C

such that all but finitely many points t ∈ C(k), the fiber

Et = π−1(t)

is a smooth curve of genus 1 and we have a section to π

σ : C → E .

This surface an associated elliptic curve E/K where K = k(C).
In Silverman’s book Advanced Topics in the Arithmetic of Elliptic Curves,

he proves that we have an elliptic curve E/K with an associated elliptic surface
E → C that does not split, then if we fix some constant B the set

{P ∈ E(K)|h(P ) ≤ B}
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is finite.
Here an elliptic surface E → C splits if there is a birational isomorphism

i : E → E0 × C

that commutes with the projections onto C.

Call and Silverman proved the following two theorems in their paper ”Canon-
ical heights on varieties with morphism.”

Theorem 18. Using the notation above the example, there exists constants
c1, c2 depending on the family V → C, the map φ, the divisor class η and the
choice of Weil height functions hV,η and hC such that

|ĥVt,ηt,φt
(x)− hV,η(x)| ≥ c1hC(t) + c2 for all t ∈ C0 and all x ∈ Vt

If we consider a section P : C → V to π : V → C then P corresponds to a
point PV ∈ V (K). Using the above theorem they prove

Theorem 19.

lim
t∈C0(K)
hC(t)→0

ĥVt,ηt,φt
(Pt)

hC(t)
= ĥV,ηV ,φV

(PV ).

References 1. Again, most of the theorems and proofs come from Marc Hindry
and Joseph Silverman’s ”Diophantine Geometry, An Introduction.” Other ma-
terial comes from Robin Hartshorne’s ”Algebraic Geometry” and Joseph Sil-
verman’s ”The Arithmetic of Elliptic Curves.” The last page or so comes from
Joseph Silverman’s ”Advanced Topics in the Arithmetic of Elliptic Curves” and
Gregory Call and Joseph Silverman’s paper ”Canonical heights on varieties with
morphism.”
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