The infinite Quaternion group \mathbf{Q}_{∞} and the Airy equation

The following material was presented by Lourdes Juan in the KSDA on Sunday, May 07, 2006 at Hunter College. It is part of a joint paper with Arne Ledet.

Example. Let Q_{∞} denote the group generated by \mathbb{G}_m and j, subject to the conditions $j^2 = -1 \in \mathbb{G}_m$ and $jxj^{-1} = x^{-1}$ for $x \in \mathbb{G}_m$.

Then Q_{∞} is generated by the matrices

$$a = \begin{pmatrix} 1/a & 0 \\ 0 & a \end{pmatrix}, \quad j = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix},$$

where $a \in \mathbb{G}_m$. This group contains all the quaternion groups $Q_{4n} = \langle \zeta, j \rangle$, where ζ is a primitive $2n^{\text{th}}$ root of unity, hence the name Q_{∞} .

Since the connected component \mathbb{G}_m has trivial cohomology, we can take the crossed homomorphism to be of the form $f: \operatorname{Gal}(M/K) \to Q_{\infty}(M)$, where M/K is a quadratic extension. Let τ be a generator for $\operatorname{Gal}(M/K)$, and let $f_{\tau} = cj$, $c \in M^*$. Since $1 = f_1 = f_{\tau}\tau(f_{\tau}) = cj\tau(c)j = -c/\tau(c)$, we have $\tau(c) = -c$, and can write $M = K(\sqrt{b})$, where $b = c^2$ and $c = \sqrt{b}$.

The coordinate ring for the torsor is R = M[x, 1/x], where $\begin{pmatrix} x & 0 \\ 0 & 1/x \end{pmatrix}$ is the generic element in \mathbb{G}_m . The $Q_{\infty}(\mathfrak{C})$ -action on R is then

$$a \colon \sqrt{b} \mapsto \sqrt{b}, \quad x \mapsto ax,$$
$$j \colon \sqrt{b} \mapsto -\sqrt{b}, \quad x \mapsto \sqrt{b}/x.$$

If we want a derivation on R, given by x' = ax, $a \in M$, such that $Q_{\infty}(\mathfrak{C})$ provides differential automorphisms, we must have

$$\tau(a)\frac{\sqrt{b}}{x} = j(ax) = j(x') = (j(x))' = \left(\frac{\sqrt{b}}{x}\right)'$$
$$= \frac{\frac{b'}{2\sqrt{b}}x - \sqrt{b}ax}{x^2} = \left(\frac{b'}{2b} - a\right)\frac{\sqrt{b}}{x},$$

i.e.,

$$a + \tau(a) = \frac{b'}{2b},$$

or

$$a = \frac{b'}{4b} + \alpha \sqrt{b}, \quad \alpha \in K$$

(note that $a + \tau(a)$ is the trace of a).

Of course, we only get a Picard-Vessiot extension if there are no new constants, i.e., if a is not a rational multiple of a logarithmic derivative

in $K(\sqrt{b})$. In that case, the extension $K(\sqrt{b},x)/K$ is the Picard-Vessiot extension for the differential equation

$$y'' - \left(\frac{\alpha'}{\alpha} + \frac{b'}{b}\right)y' - \left(\left(\frac{b'}{4b}\right)' - \left(\frac{\alpha'}{\alpha} + \frac{3b'}{4b}\right)\frac{b'}{4b} + \alpha^2 b\right)y = 0,$$

which has x and \sqrt{b}/x as linearly independent solutions.

For instance: Let $K = \mathfrak{C}(t)$, with t' = 1, and take b = t. Since all logarithmic derivatives in $\mathfrak{C}(\sqrt{t})$ are rational functions in \sqrt{t} of negative degree, we can then take $\alpha = 1$, and get a $Q_{\infty}(\mathfrak{C})$ -extension

$$\mathfrak{C}(\sqrt{t},x)/\mathfrak{C}(t),$$

where t' = 1 and $x' = (1/4t + \sqrt{t})x$.

More 'generically', we can let $K = \mathfrak{C}\langle \alpha, b \rangle$, where α and b are differential indeterminates.

Remark. Let $K = \mathfrak{C}((1/t))$ be the Laurent series field in 1/t, with the usual derivation. Then the Ricatti equation $v' + v^2 = t$ has exactly two solutions in $M = K(\sqrt{t}) = \mathfrak{C}((1/\sqrt{t}))$, and these are conjugate under the Galois action. We let

$$a = \sqrt{t} + \sum_{n=0}^{\infty} a_n t^{-n/2}$$

be one of them.

The differential equation w'-2aw=1 has a (unique) solution in M, which we will simply call w. Then w'/w-a is a solution to the Ricatti equation, i.e., $w'/w-a=\tau(a)$, when τ is the generator for $\operatorname{Gal}(M/K)$. In particular, $w'/w=a+\tau(a)\in K$, which means that w and $\tau(w)$ have the same logarithmic derivative, and therefore that they differ by a constant: $\tau(w)=cw$ for some $c\in\mathfrak{C}^*$. Since $w\notin K$ and $\tau^2=1$, we get c=-1 and $\tau(w)=-w$.

Consequently, $b = w^2 \in K$, and $M = K(\sqrt{b})$, with $\sqrt{b} = w$.

Now, with $\alpha = -\frac{1}{2}w^{-1}$, we get $a = b'/4b + \alpha\sqrt{b}$. A logarithmic derivative in M has no terms in degree ≥ -1 , so a is not a rational multiple of a logarithmic derivative, and if we let x' = ax, we get a Picard-Vessiot extension with differential Galois group $Q_{\infty}(\mathfrak{C})$. The corresponding differential equation is the Airy equation

$$y'' - ty = 0.$$

Note. The Airy equation is also discussed in M. van der Put & M. F. Singer, *Galois Theory of Linear Differential Equations*, Grundlehren der mathematischen Wissenschaften **328**, Springer-Verlag, 2003.