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◮ 1. Rota-Baxter algebras:
Fix λ in the base ring k. A Rota-Baxter operator or a Baxter operator
of weight λ on a k-algebra R is a linear map P : R → R such that

P(x)P(y) = P(xP(y)) + P(P(x)y) + λP(xy), ∀ x , y ∈ R.
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◮ 1. Rota-Baxter algebras:
Fix λ in the base ring k. A Rota-Baxter operator or a Baxter operator
of weight λ on a k-algebra R is a linear map P : R → R such that

P(x)P(y) = P(xP(y)) + P(P(x)y) + λP(xy), ∀ x , y ∈ R.

◮ Examples: Integration: R = Cont (R) (ring of continuous functions
on R). P : R → R, P[f ](x) :=

∫ x

0
f (t)dt .

Then P is a weight 0 Rota-Baxter operator:
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◮ 1. Rota-Baxter algebras:
Fix λ in the base ring k. A Rota-Baxter operator or a Baxter operator
of weight λ on a k-algebra R is a linear map P : R → R such that

P(x)P(y) = P(xP(y)) + P(P(x)y) + λP(xy), ∀ x , y ∈ R.

◮ Examples: Integration: R = Cont (R) (ring of continuous functions
on R). P : R → R, P[f ](x) :=

∫ x

0
f (t)dt .

Then P is a weight 0 Rota-Baxter operator:
◮

F (x) := P[f ](x) =

∫ x

0
f (t) dt , G(x) := P[g](x) =

∫ x

0
g(t) dt .

Then the integration by parts formula states
∫ x

0
F (t)G′(t)dt = F (x)G(x) −

∫ x

0
F ′(t)G(t)dt

(F (0) = G(0) = 0).
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◮ 1. Rota-Baxter algebras:
Fix λ in the base ring k. A Rota-Baxter operator or a Baxter operator
of weight λ on a k-algebra R is a linear map P : R → R such that

P(x)P(y) = P(xP(y)) + P(P(x)y) + λP(xy), ∀ x , y ∈ R.

◮ Examples: Integration: R = Cont (R) (ring of continuous functions
on R). P : R → R, P[f ](x) :=

∫ x

0
f (t)dt .

Then P is a weight 0 Rota-Baxter operator:
◮

F (x) := P[f ](x) =

∫ x

0
f (t) dt , G(x) := P[g](x) =

∫ x

0
g(t) dt .

Then the integration by parts formula states
∫ x

0
F (t)G′(t)dt = F (x)G(x) −

∫ x

0
F ′(t)G(t)dt

(F (0) = G(0) = 0).
◮ that is,

P[P[f ]g](x) = P[f ](x)P[g](x) − P[fP[g]](x).

6



◮ Summation: On a suitable class of functions, define

P[f ](x) :=
∑

n≥1

f (x + n).
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◮ Summation: On a suitable class of functions, define

P[f ](x) :=
∑

n≥1

f (x + n).

◮ Then P is a Rota-Baxter operator of weight 1:
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◮ Summation: On a suitable class of functions, define

P[f ](x) :=
∑

n≥1

f (x + n).

◮ Then P is a Rota-Baxter operator of weight 1:
◮

P[f ](x)P[g](x) =
(∑

n≥1

f (x + n)
)( ∑

m≥1

g(x + m)
)

=
∑

n≥1,m≥1

f (x + n)g(x + m)

=
( ∑

n>m≥1

+
∑

m>n≥1

+
∑

m=n≥1

)

f (x + n)g(x + m)

=
∑

m≥1

( ∑

k≥1

f (x + k + m
︸ ︷︷ ︸

=n

)
)
g(x + m) +

∑

n≥1

( ∑

k≥1

g(x + k + n
︸ ︷︷ ︸

=m

)
)
f (x + n)

+
∑

n≥1

f (x + n)g(x + n)

= P(P(f )g)(x) + P(fP(g))(x) + P(fg)(x).
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◮ Partial sum: Let R be the set of sequences {an} with values in k.
Then R is a k-algebra with termwise addition, multiplication and
scalar product. Define

P : R → R, P(a1, a2, · · · ) = (a1, a1 + a2, · · · ).

Then P is a Rota-Baxter operator of weight 1.
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◮ Partial sum: Let R be the set of sequences {an} with values in k.
Then R is a k-algebra with termwise addition, multiplication and
scalar product. Define

P : R → R, P(a1, a2, · · · ) = (a1, a1 + a2, · · · ).

Then P is a Rota-Baxter operator of weight 1.

◮ Matrices: On the algebra of upper triangular n × n matrices Mu
n (k),

define
P((ckℓ))ij = δij

∑

k≥i

cik .

Then P is a Rota-Baxter operator of weight −1.
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◮ Scalar product: Let R be a k-algebra. For a given λ ∈ k, define

Pλ : R → R, x 7→ −λx ,∀x ∈ R.

Then (R, Pλ) is a Rota-Baxter algebra of weight λ. In particular, id is
a Rota-Baxter operator of weight -1 and any k-algebra is a
Rota-Baxter algebra.
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◮ Scalar product: Let R be a k-algebra. For a given λ ∈ k, define

Pλ : R → R, x 7→ −λx ,∀x ∈ R.

Then (R, Pλ) is a Rota-Baxter algebra of weight λ. In particular, id is
a Rota-Baxter operator of weight -1 and any k-algebra is a
Rota-Baxter algebra.

◮ QFT dimensional regularization: Let R = C[t−1, t]] be the ring of
Laurent series

∑∞
n=−k antn, k ≥ 0. Define

P(

∞∑

n=−k

antn) =

−1∑

n=−k

antn.

Then P is a Rota-Baxter operator of weight -1.
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◮ Classical Yang-Baxter equation: Let g be a Lie algebra with a
self-duality g∗ := Hom(g, k) ∼= g. Then g⊗2 ∼= g ⊗ g∗ ∼= End(g). Let
r12 ∈ g⊗2 be anti-symmetric. Then r12 is a solution (r-matrix) of the
classical Yang-Baxter equation (CYB)

CYB(r) := [r12, r13] + [r12, r23] + [r13, r23] = 0

if and only if the corresponding P ∈ End(g) is a (Lie algebra)
Rota-Baxter operator of weight 0:

[P(x), P(y)] = P[P(x), y ] + P[x , P(y)].
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◮ Classical Yang-Baxter equation: Let g be a Lie algebra with a
self-duality g∗ := Hom(g, k) ∼= g. Then g⊗2 ∼= g ⊗ g∗ ∼= End(g). Let
r12 ∈ g⊗2 be anti-symmetric. Then r12 is a solution (r-matrix) of the
classical Yang-Baxter equation (CYB)

CYB(r) := [r12, r13] + [r12, r23] + [r13, r23] = 0

if and only if the corresponding P ∈ End(g) is a (Lie algebra)
Rota-Baxter operator of weight 0:

[P(x), P(y)] = P[P(x), y ] + P[x , P(y)].

◮ Associative Yang-Baxter equations (Aguiar) Let A be an
associative algebra and let r :=

∑

i ui ⊗ vi ∈ R ⊗ R be a solution of
the associative Yang-Baxter equation

r13r12 − r12r23 + r23r13 = 0.

Then Pr (x) :=
∑

i uixvi defines a Rota-Baxter operator of weight 0.
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◮ Classical Yang-Baxter equation: Let g be a Lie algebra with a
self-duality g∗ := Hom(g, k) ∼= g. Then g⊗2 ∼= g ⊗ g∗ ∼= End(g). Let
r12 ∈ g⊗2 be anti-symmetric. Then r12 is a solution (r-matrix) of the
classical Yang-Baxter equation (CYB)

CYB(r) := [r12, r13] + [r12, r23] + [r13, r23] = 0

if and only if the corresponding P ∈ End(g) is a (Lie algebra)
Rota-Baxter operator of weight 0:

[P(x), P(y)] = P[P(x), y ] + P[x , P(y)].

◮ Associative Yang-Baxter equations (Aguiar) Let A be an
associative algebra and let r :=

∑

i ui ⊗ vi ∈ R ⊗ R be a solution of
the associative Yang-Baxter equation

r13r12 − r12r23 + r23r13 = 0.

Then Pr (x) :=
∑

i uixvi defines a Rota-Baxter operator of weight 0.
◮ Others Divided powers, Hochschild homology ring, dendriform

algebras, rooted trees, quasi-shuffles, Chen integral symbols, ....
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◮ 2. Free commutative Rota-Baxter algebras
Let A be a commutative k-algebra. Let X

+(A) =
⊕

n≥0 A⊗n(= T (A)).
Consider the following products on X

+(A). Define 1k ∈ k to be the
unit. Let a = a1 ⊗ · · · ⊗ am ∈ A⊗m and b = b1 ⊗ · · · ⊗ bn ∈ A⊗n.
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◮ 2. Free commutative Rota-Baxter algebras
Let A be a commutative k-algebra. Let X

+(A) =
⊕

n≥0 A⊗n(= T (A)).
Consider the following products on X

+(A). Define 1k ∈ k to be the
unit. Let a = a1 ⊗ · · · ⊗ am ∈ A⊗m and b = b1 ⊗ · · · ⊗ bn ∈ A⊗n.

◮ Quasi-shuffle product: Hoffman (2000) on multiple zeta values.
Write a = a1 ⊗ a′, b = b1 ⊗ b′. Recursively define

(a1⊗a′)∗(b1⊗b′) = a1⊗(a′∗(b1⊗b′)))+b1⊗((a1⊗a′)∗b′)+a1b1⊗(a′∗b′),

with the convention that if a = a1, then a′ multiples as the identity. It
defines the shuffle product without the third term.
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◮ 2. Free commutative Rota-Baxter algebras
Let A be a commutative k-algebra. Let X

+(A) =
⊕

n≥0 A⊗n(= T (A)).
Consider the following products on X

+(A). Define 1k ∈ k to be the
unit. Let a = a1 ⊗ · · · ⊗ am ∈ A⊗m and b = b1 ⊗ · · · ⊗ bn ∈ A⊗n.

◮ Quasi-shuffle product: Hoffman (2000) on multiple zeta values.
Write a = a1 ⊗ a′, b = b1 ⊗ b′. Recursively define

(a1⊗a′)∗(b1⊗b′) = a1⊗(a′∗(b1⊗b′)))+b1⊗((a1⊗a′)∗b′)+a1b1⊗(a′∗b′),

with the convention that if a = a1, then a′ multiples as the identity. It
defines the shuffle product without the third term.

◮ Example.
a1 ∗ (b1 ⊗b2) = a1 ⊗ (a′ ∗ (b1 ⊗b2))+ b1 ⊗ (a1 ∗b2)+ (a1b1)⊗ (a′ ∗b2)
= a1 ⊗ (b1 ⊗ b2) + b1 ⊗ (a1 ∗ b2) + (a1b1) ⊗ b2.

= a1 ⊗ b1 ⊗ b2 + b1 ⊗ a1 ⊗ b2 + b1 ⊗ b2 ⊗ a1 + b1 ⊗ a1b2 + a1b1 ⊗ b2.

20



◮ Mixable shuffle product: Guo-Keigher (2000) on Rota-Baxter
algebras, Goncharov (2002) on motivic shuffle relations and
Hazewinckle on overlapping shuffle products.
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◮ Mixable shuffle product: Guo-Keigher (2000) on Rota-Baxter
algebras, Goncharov (2002) on motivic shuffle relations and
Hazewinckle on overlapping shuffle products.

◮ A shuffle of a = a1 ⊗ . . . ⊗ am and b = b1 ⊗ . . . ⊗ bn is a tensor list of
ai and bj without change the order of the ais and bjs.
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◮ Mixable shuffle product: Guo-Keigher (2000) on Rota-Baxter
algebras, Goncharov (2002) on motivic shuffle relations and
Hazewinckle on overlapping shuffle products.

◮ A shuffle of a = a1 ⊗ . . . ⊗ am and b = b1 ⊗ . . . ⊗ bn is a tensor list of
ai and bj without change the order of the ais and bjs.

◮ A mixable shuffle is a shuffle in which some pairs ai ⊗ bj are merged
into aibj .
Define (a1 ⊗ . . . ⊗ am) ⋄ (b1 ⊗ . . . ⊗ bn) to be the sum of mixable
shuffles of a1 ⊗ . . . ⊗ am and b1 ⊗ . . . ⊗ bn.
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◮ Mixable shuffle product: Guo-Keigher (2000) on Rota-Baxter
algebras, Goncharov (2002) on motivic shuffle relations and
Hazewinckle on overlapping shuffle products.

◮ A shuffle of a = a1 ⊗ . . . ⊗ am and b = b1 ⊗ . . . ⊗ bn is a tensor list of
ai and bj without change the order of the ais and bjs.

◮ A mixable shuffle is a shuffle in which some pairs ai ⊗ bj are merged
into aibj .
Define (a1 ⊗ . . . ⊗ am) ⋄ (b1 ⊗ . . . ⊗ bn) to be the sum of mixable
shuffles of a1 ⊗ . . . ⊗ am and b1 ⊗ . . . ⊗ bn.

◮ Example:

a1 ⋄ (b1 ⊗ b2)

= a1 ⊗ b1 ⊗ b2 + b1 ⊗ a1 ⊗ b2 + b1 ⊗ b2 ⊗ a1 (shuffles)

+ a1b1 ⊗ b2 + b1 ⊗ a1b2 (merged shuffles).
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◮ Stuffles: Cartier (1972) on free commutative Rota-Baxter algebras,
Ehrenborg (1996) on monomial quasi-symmetric functions and
Bradley (2004) on q-multiple zeta values.
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◮ Stuffles: Cartier (1972) on free commutative Rota-Baxter algebras,
Ehrenborg (1996) on monomial quasi-symmetric functions and
Bradley (2004) on q-multiple zeta values.

◮ Let Sc(m, n) be the set of triples (k , α, β) where
max{m, n} ≤ k ≤ m + n and α : [m] → [k ], β : [n] → [k ] are order
preserving injections with im(α) ∪ im(β) = [k ].
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◮ Stuffles: Cartier (1972) on free commutative Rota-Baxter algebras,
Ehrenborg (1996) on monomial quasi-symmetric functions and
Bradley (2004) on q-multiple zeta values.

◮ Let Sc(m, n) be the set of triples (k , α, β) where
max{m, n} ≤ k ≤ m + n and α : [m] → [k ], β : [n] → [k ] are order
preserving injections with im(α) ∪ im(β) = [k ].

◮ For a given (k , α, β) ∈ Sc(m, n) and 1 ≤ i ≤ k , α−1(i) is either a
singleton {j} or ∅. Then accordingly define aα−1(i) = aj or 1. Similarly
define bβ−1(i). Call aα−1(1)bβ−1(1) ⊗ · · · ⊗ aα−1(k)bβ−1(k) a stuffle.
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◮ Stuffles: Cartier (1972) on free commutative Rota-Baxter algebras,
Ehrenborg (1996) on monomial quasi-symmetric functions and
Bradley (2004) on q-multiple zeta values.

◮ Let Sc(m, n) be the set of triples (k , α, β) where
max{m, n} ≤ k ≤ m + n and α : [m] → [k ], β : [n] → [k ] are order
preserving injections with im(α) ∪ im(β) = [k ].

◮ For a given (k , α, β) ∈ Sc(m, n) and 1 ≤ i ≤ k , α−1(i) is either a
singleton {j} or ∅. Then accordingly define aα−1(i) = aj or 1. Similarly
define bβ−1(i). Call aα−1(1)bβ−1(1) ⊗ · · · ⊗ aα−1(k)bβ−1(k) a stuffle.

◮ Define a product

a ⋄ b =
∑

(k ,α,β)∈Sc(m,n)

aα−1(1)bβ−1(1) ⊗ · · · ⊗ aα−1(k)bβ−1(k)
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◮ Stuffles: Cartier (1972) on free commutative Rota-Baxter algebras,
Ehrenborg (1996) on monomial quasi-symmetric functions and
Bradley (2004) on q-multiple zeta values.

◮ Let Sc(m, n) be the set of triples (k , α, β) where
max{m, n} ≤ k ≤ m + n and α : [m] → [k ], β : [n] → [k ] are order
preserving injections with im(α) ∪ im(β) = [k ].

◮ For a given (k , α, β) ∈ Sc(m, n) and 1 ≤ i ≤ k , α−1(i) is either a
singleton {j} or ∅. Then accordingly define aα−1(i) = aj or 1. Similarly
define bβ−1(i). Call aα−1(1)bβ−1(1) ⊗ · · · ⊗ aα−1(k)bβ−1(k) a stuffle.

◮ Define a product

a ⋄ b =
∑

(k ,α,β)∈Sc(m,n)

aα−1(1)bβ−1(1) ⊗ · · · ⊗ aα−1(k)bβ−1(k)

◮

Example:
a = a1, m = 1,

b = b1 ⊗ b2,

n = 2.

k α β stuffles
3 α(1) = 1 β(1) = 2, β(2) = 3 a1 ⊗ b1 ⊗ b2

3 α(1) = 2 β(1) = 1, β(2) = 3 b1 ⊗ a1 ⊗ b2

3 α(1) = 3 β(1) = 1, β(2) = 2 b1 ⊗ b2 ⊗ a1

2 α(1) = 1 β(1) = 1, β(2) = 2 a1b1 ⊗ b2

2 α(1) = 2 β(1) = 1, β(2) = 2 b1 ⊗ a1b2
29



◮ Delannoy paths: Fares (1999) on coalgebras, Aguiar-Hsiao (2004)
on quasi-symmetric functions and Loday (2005) on Zinbiel operads.
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◮ Delannoy paths: Fares (1999) on coalgebras, Aguiar-Hsiao (2004)
on quasi-symmetric functions and Loday (2005) on Zinbiel operads.

◮ Let D(m, n) be the set of lattice paths from (0, 0) to (m, n) consisting
steps either to the right, to the above, or to the above-right. For
d ∈ D(m, n) define d(a, b) to be the path d with a = (a1, · · · , am)
(resp. b = (b1, · · · , bn)) sequentially labeling the horizontal (resp.
vertical) and diagonal segments of d . Define

a ⋄d b =
∑

d∈D(m,n)

d(a, b).
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◮ Delannoy paths: Fares (1999) on coalgebras, Aguiar-Hsiao (2004)
on quasi-symmetric functions and Loday (2005) on Zinbiel operads.

◮ Let D(m, n) be the set of lattice paths from (0, 0) to (m, n) consisting
steps either to the right, to the above, or to the above-right. For
d ∈ D(m, n) define d(a, b) to be the path d with a = (a1, · · · , am)
(resp. b = (b1, · · · , bn)) sequentially labeling the horizontal (resp.
vertical) and diagonal segments of d . Define

a ⋄d b =
∑

d∈D(m,n)

d(a, b).

◮ Example: a = a1, b = b1 ⊗ b2.

b1

b2

a1

b1

b2

a1

b1

b2

a1

b1

b2

a1

b1

b2

a1

a1 ⊗ b1 ⊗ b2 b1 ⊗ a1 ⊗ b2 b1 ⊗ b2 ⊗ a1 a1b1 ⊗ b2 b1 ⊗ a1b2
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◮ Delannoy paths: Fares (1999) on coalgebras, Aguiar-Hsiao (2004)
on quasi-symmetric functions and Loday (2005) on Zinbiel operads.

◮ Let D(m, n) be the set of lattice paths from (0, 0) to (m, n) consisting
steps either to the right, to the above, or to the above-right. For
d ∈ D(m, n) define d(a, b) to be the path d with a = (a1, · · · , am)
(resp. b = (b1, · · · , bn)) sequentially labeling the horizontal (resp.
vertical) and diagonal segments of d . Define

a ⋄d b =
∑

d∈D(m,n)

d(a, b).

◮ Example: a = a1, b = b1 ⊗ b2.

b1

b2

a1

b1

b2

a1

b1

b2

a1

b1

b2

a1

b1

b2

a1

a1 ⊗ b1 ⊗ b2 b1 ⊗ a1 ⊗ b2 b1 ⊗ b2 ⊗ a1 a1b1 ⊗ b2 b1 ⊗ a1b2

◮ Theorem All the above products define the same algebra on X
+(A)

(of weight λ = 1).
33



◮ A free commutative Rota-Baxter algebra over another
commutative algebra A is a commutative Rota-Baxter algebra
X(A) with an algebra homomorphism jA : A → X(A) such that for
any commutative Rota-Baxter algebra R and algebra homomorphism
f : A → R, there is a unique Rota-Baxter algebra homomorphism
making the diagram commute

A
jA

//

f

''O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

X(A)

f̄
��

R
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◮ A free commutative Rota-Baxter algebra over another
commutative algebra A is a commutative Rota-Baxter algebra
X(A) with an algebra homomorphism jA : A → X(A) such that for
any commutative Rota-Baxter algebra R and algebra homomorphism
f : A → R, there is a unique Rota-Baxter algebra homomorphism
making the diagram commute

A
jA

//

f

''O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

X(A)

f̄
��

R

◮ When A = k[X ], we have the free commutative Rota-Baxter algebra
over X .
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◮ A free commutative Rota-Baxter algebra over another
commutative algebra A is a commutative Rota-Baxter algebra
X(A) with an algebra homomorphism jA : A → X(A) such that for
any commutative Rota-Baxter algebra R and algebra homomorphism
f : A → R, there is a unique Rota-Baxter algebra homomorphism
making the diagram commute

A
jA

//

f

''O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

X(A)

f̄
��

R

◮ When A = k[X ], we have the free commutative Rota-Baxter algebra
over X .

◮ Recall (X+(A), ⋄) is a commutative algebra. Then the tensor product
algebra (scalar extension) X(A) := A ⊗ X

+(A) is a commutative
A-algebra.
Theorem (Guo-Keigher) X(A) with the shift operator P(a) := 1 ⊗ a is
the free commutative RBA over A.
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◮ Free (noncommutative) Rota-Baxter algebras of rooted fore sts.
Let X

NC(X ) be the free Rota-Baxter algebra on a set X . Let F(X ) be
the set of rooted forests with leafs decorated by X ,
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◮ Free (noncommutative) Rota-Baxter algebras of rooted fore sts.
Let X

NC(X ) be the free Rota-Baxter algebra on a set X . Let F(X ) be
the set of rooted forests with leafs decorated by X ,

◮ Define Fℓ(X ) to be the subset of F(X ) consisting of leaf decorated
forests that do not have a vertex with adjacent non-leaf branches.
Such a forest is called leaf-spaced.
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◮ Free (noncommutative) Rota-Baxter algebras of rooted fore sts.
Let X

NC(X ) be the free Rota-Baxter algebra on a set X . Let F(X ) be
the set of rooted forests with leafs decorated by X ,

◮ Define Fℓ(X ) to be the subset of F(X ) consisting of leaf decorated
forests that do not have a vertex with adjacent non-leaf branches.
Such a forest is called leaf-spaced.

◮

e

a
d

b c

f

g h,

e

a
d

b c
g

f h

For example, the left tree is not leaf-spaced since the two right most
branches are not separated by a leaf branch. But the right tree is
leaf-spaced.

39



◮ Define a product ⋄ on Fℓ(X ) as follows.
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◮ Define a product ⋄ on Fℓ(X ) as follows.
◮ 1. If F and F ′ are leaf decorated trees, then

F ⋄ F ′ =

{
F F ′ (concatenation of trees), F = •x or F ′ = •′x ,

⌊F ⋄ F ′⌋ + ⌊F ⋄ F
′

⌋ + λ⌊F ⋄ F
′

⌋, F = ⌊F⌋, F ′ = ⌊F
′

⌋.

Here the second line makes sense since a leaf decorated tree is either
of the form • x for some x ∈ X , or is the grafting ⌊F⌋ where F is the
leaf decorated forest obtained from F by removing its root.
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◮ Define a product ⋄ on Fℓ(X ) as follows.
◮ 1. If F and F ′ are leaf decorated trees, then

F ⋄ F ′ =

{
F F ′ (concatenation of trees), F = •x or F ′ = •′x ,

⌊F ⋄ F ′⌋ + ⌊F ⋄ F
′

⌋ + λ⌊F ⋄ F
′

⌋, F = ⌊F⌋, F ′ = ⌊F
′

⌋.

Here the second line makes sense since a leaf decorated tree is either
of the form • x for some x ∈ X , or is the grafting ⌊F⌋ where F is the
leaf decorated forest obtained from F by removing its root.

2. If F = F1 · · · Fb and F ′ = F ′

1 · · · F ′

b′ are in Fℓ(X) with their
corresponding decompositions into leaf decorated trees. Then

F ⋄ F ′ = F1 · · · (Fb ⋄ F ′

1) · · · Fb′ .

x
⋄

y
= ⌊ •x ⌋ ⋄ ⌊ •y ⌋

= ⌊ •x ⋄
y
⌋ + ⌊

x
⋄ •y ⌋ + λ⌊ •x ⋄ •y ⌋

= ⌊ •x y ⌋ + ⌊ x •y ⌋ + λ⌊ •x •y ⌋

=
y

x +
x

y
+ λ

x y
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◮ Define
jX : X → Fℓ(X ), jX (x) = • x , x ∈ X .
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◮ Define
jX : X → Fℓ(X ), jX (x) = • x , x ∈ X .

◮ Theorem. The quadruple (kFℓ(X ), ⋄, ⌊ ⌋, jX ) is the free nonunitary
(noncommutative) Rota-Baxter algebra on X .
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◮ Theorem. The quadruple (kFℓ(X ), ⋄, ⌊ ⌋, jX ) is the free nonunitary
(noncommutative) Rota-Baxter algebra on X .

◮ There are also constructions in terms of angularly decorated forests
(in W. Keigher’s talk) and bracketed words (in W. Sit’s talk).
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◮ References: L. Guo, Operated semigroups, Motzkin paths and rooted
trees, to appear in J. Algebraic Combinatorics, arXiv:0710.0429.
L. Guo and W. Keigher, Baxter algebras and shuffle products, Adv. in
Math. 150 (2000), 117-149.
M.E. Hoffman, Quasi-shuffle products, J. Algebraic Combin., 11, no.
1, (2000), 49-68.
Reference for W. Keigher’s talk: L. Guo and W. Keigher, On
differential Rota-Baxter algebras, J. Pure and Appl. Algebra, 212
(2008), 522-540, arXiv: math.RA/0703780.
Reference for W. Sit’s talk: L. Guo and W. Sit, Enumeration of
Rota-Baxter words (with W. Y. Sit), in: Proceedings ISSAC 2006,
Genoa, Italy, ACM Press, 2006, 124-131, arXiv: math.RA/0602449.
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