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In his 1979 article on nonlinear differential equations, Manin describes
three possible languages for the variational formalism: the classical lan-
guage, the geometric language, and, differential algebra. He critiques each
approach. He writes:

The language of differential algebra is better suited for ex-
pressing such properties (invariant properties of differential equa-
tions), and, puts at the disposal of the investigator the exten-
sive apparatus of commutative algebra, differential algebra, and
algebraic geometry....The numerous “explicit formulas” for the
solutions of the classical and newest differential equations have
good interpretations in this language; the same may be said for
conservation laws. However, the language of differential alge-
bra which has been traditional since the work of Ritt does not
contain the means for describing changes of the functions (depen-
dent variables) and the variables xi (independent variables), and
for clarifying properties which are invariant under such changes.
This is one of the main reasons for the embryonic state of so-
called “Bäcklund transformations” in which there has been a re-
cent surge of interest.

The development of differential algebraic geometry, which began in the
1970’s has begun to address these concerns. There is a lot left to do. For
a modern approach, see Kovacic (2002 ff)

1 Differential Algebraic Geometry

Throughout, F is a differential field of characteristic 0, equipped with a set
∂ of commuting derivation operators ∂1, . . . , ∂m, and, field C of constants.
Note that the field Q of rational numbers is contained in C. Let Θ be the
free commutative monoid on ∂. If θ = ∂k11 · · · ∂kmm is a derivative operator in
Θ, then, ordθ =

P
ki. If the cardinality of ∂ is 1, we identify the set with

its only element, and, call F an ordinary differential field . Otherwise, F is
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a partial differential field. Throughout, we will use the prefix ∂- in place of
“differential” or “differentially.”
Note that we define the ∂-structure on an F-algebra R by a homomor-

phism from Θ into the multiplicative monoid (EndR,·) that maps ∂ into
DerR. If S is a ∂-ring and a subring of a ∂-ring R, then, the ∂-structure of
R extends that of S. In particular, the action of ∂ on R extends the action
of ∂ on F. We call R a ∂-F-algebra. All our ∂-rings will be ∂-F-algebras.
If R is a ∂-F-algebra, a = (a1, . . . , an) is a finite family of elements of

R, and θ ∈ Θ, we denote by θa the family (θa1, . . . , θan), and, by Θa the
family θa, θ ∈ Θ. R is finitely ∂-generated over F if there exists a finite
family a of elements of R such that R = F [Θa]. We write R = F {a} =
F {a1, . . . , an}. If y = (y1, . . . , yn) is a family of ∂-indeterminates, then, the
∂-polynomial algebra F {y} = F {y1, . . . , yn} over F is, thus, an infinitely
generated polynomial algebra over F. We can think of the ∂-polynomials as
functions on Fn.
If G is a ∂-extension field of F, G is finitely ∂-generated over F if there

exists a finite family a of elements of G such that G = F (Θa). We write
G = F hai. G is the quotient field of R = F {a}.
Example 1.1. Let D be a connected open region of Cm, C the field of com-
plex numbers, and, let t1, . . . , tm be complex variables. Set ∂ = {∂t1, . . . , ∂tm}.
Let G = (G, ∂) be the ∂-field of functions meromorphic in D. Let F = (F, ∂)
be the ∂-field of functions meromorphic in Cm. Then, G is a ∂-extension
field of F.

Let R, and, S be ∂-algebras over F. An F-algebra homomorphism ϕ :
R→ S is a ∂-homomorphism if ϕ◦∂i = ∂i◦ϕ (ϕ commutes with the action of
the derivation operators.) kerϕ is a ∂-ideal of R, and im ϕ is a ∂-subalgebra
over F of S.

Theorem 1.2. The Seidenberg Lefschetz Principle (1958). Let F be
any ∂-field that is finitely ∂-generated over Q, where ∂ = {∂1, . . . , ∂m}. Let
(M, ∂) be the field of meromorphic functions on Cm, where the action of ∂ is
by the partial derivatives of the complex variables t1, . . . , tm. Then, there is
a connected open region D of Cm and, a ∂-isomorphism of F into the field
of meromorphic functions on D.

The logician Abraham Robinson formulated the analogue for differential
algebra of an algebraically closed field (1959). Let f1, . . . , fr, g be differential
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polynomials of positive degree in F {y1, . . . , yn}. The system
f1 = 0, . . . , fr = 0, g 6= 0

is consistent if there exists a ∂-extension field G of F and a family a =
(a1, . . . , an) of elements of G such that f1(a) = 0, . . . , fr(a) = 0, g(a) 6= 0.
F is differentially closed if every consistent system of differential polynomial
equations and inequations has a solution with coordinates in F. A differen-
tially closed differential field is algebraically closed.

1.1 Differential affine n-space An: The Kolchin topol-
ogy

Let U be a differentially closed ∂-extension field of F. Let K be the field
of constants of U. Recall the Zariski topology on Un: V ⊂ Un is Zariski
closed if there exist polynomials (fi)i∈I , fi ∈ U[y1, . . . yn] such that V =
{a ∈ Un : fi(η) = 0, i ∈ I}. The Zariski closed sets are the closed sets of
the topology.whose closed sets are algebraic varieties. Now assume that
y1, . . . , yn are ∂-indeterminates over U.
Using the Zariski topology as a model, we define the Kolchin topology on

Un. A subset V of Un is Kolchin closed if there exist ∂-polynomials (fi)i∈I ,
fi ∈ U{y1, . . . yn} such that V = {a ∈ Un : fi(a) = 0, i ∈ I}. The closed
sets in the Kolchin topology are also called ∂-varieties. If the differential
polynomials defining V have coefficients in F, we say V is defined over F,
and call it a ∂-F-variety.
If V is the set of zeros of fi, i ∈ I, then, V is the set of zeros of the ∂-ideal

i = [(fi)i∈I ] that they generate. We denote V by V (i). Conversely, if i is a
∂-ideal of U{y1, . . . yn}, V = V (i) is Kolchin closed.
Note that V is order reversing:

i ⊂ j⇒ V (i) ⊃ V (j)
Also,

V ([1]) = ∅
V ([0]) = Un

V (i ∩ j) = V (ij) = V (i) ∪ V (j)
V (i+ j) = V (i) ∩ V (j)
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We denote Un, equipped with the Kolchin topology by the symbol An.
If V is a Kolchin closed subset of Un, V is a topological space in the induced
topology.
Every Zariski closed set is Kolchin closed, but, not conversely. The

Kolchin topology is a much larger topology than the Zariski topology. For ex-
ample, every Zariski closed subset of A1 is finite, whereas non—finite Kolchin
closed subsets abound. Indeed, there are strictly increasing chains of Kolchin
closed subsets: If U is ordinary, with derivation operator, ∂, and, x ∈
U has derivative 1, we have the chain {0} = V ([y]) ⊂ K = V ([∂y]) ⊂
{ax+ b : a, b ∈ K} = V ([∂2y]) ⊂ {ax2 + bx+ c : a, b, c ∈ K}
= V ([∂3y]) ⊂ ....
Exercise 1.3. Prove that if U is an ordinary ∂-field, X = {p (x) : p(x) a
polynomial with coefficients in K} is not Kolchin closed in A1.

Note: V
³√
i
´
= V (i). E.G., in U {y}, V ([y2]) = {0} = V

³p
[y2]
´
=

V ([y]).
Call two systems of differential equations equivalent if they have the same

solutions. An important motivation for Ritt in his development of differen-
tial algebra was to show that given a system of algebraic differential equa-
tions with coefficients in a differential field of meromorphic functions, there
is an equivalent finite system. Ritt replaced systems of algebraic differen-
tial equations with differential polynomial ideals. He discovered early on,
however, the disturbing fact that not every differential polynomial ideal is
finitely differentially generated.

Example 1.4. Let F be an ordinary differential field. The differential ideal£
y(i)y(i+1)

¤
i=0,1,2,...

in F {y} does not have a finite differential ideal basis.
Fortunately, if the given system of differential equations is

fi = 0, i ∈ I

then, the system defined by the radical of the differential polynomial ideal
i = [fi]i∈I is equivalent to the given system. Although

√
i need not be finitely

differentially generated, there exists a finite subset g1, . . . , gr of i such that√
i =

p
[g1, . . . , gr]. Thus, the systems fi = 0, i ∈ I and gj = 0, j = 1, . . . , r

are equivalent.
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Theorem 1.5. Ritt-Raudenbush Basis Theorem (1932) If i is a radical
∂-ideal in U {y1, . . . , yn}, then, there exists a finite family (f1, . . . , fr) of ele-
ments of i such that i =

p
[f1, . . . , fr].

Corollary 1.6. (radical ∂-Noetherianity) Every strictly ascending chain of
radical ∂-ideals of U {y1, . . . , yn} is finite.
Let V be a Kolchin closed subset of An. {f ∈ U {y1, . . . , yn} : f (V ) = 0}

is a radical ∂-ideal called the defining ∂-ideal of V , and, denoted by I (V ).
We refer to f1, . . . , fr as the defining ∂-polynomials of V (i), and, call

them a basis of the radical ∂-ideal i. V is a ∂-F-variety iff its defining
differential ideal has a basis with coefficients in F.

Theorem 1.7. (Ritt Nullstellensatz) There is an inclusion reversing bijec-
tive correspondence between the set of Kolchin closed subsets of An and the
set of radical ∂-ideals of U {y1, . . . , yn}, given by V 7−→ I(V ), i 7−→ V (i).

V (I(V )) = V

I(V (i)) =
√
i

V ⊂W =⇒ I(V ) ⊃ I (W )
I (V ∪W ) = I (V ) ∩ I(W )
I (V ∩W ) =

p
I (V ) + I(W )

Definition 1.8. A topological space is Noetherian if every strictly descend-
ing sequence of closed sets is finite.

Corollary 1.9. An, equipped with the Kolchin topology is a Noetherian topo-
logical space.

Definition 1.10. A topological space is reducible if it is the union of two
proper closed subsets.

Remark 1.11. A topological space X is connected if ∅ and X are the
only subsets that are both open and closed. If X is irreducible, then, X is
connected, but, not conversely. In the usual topology on the real plane, the
union of the x- and, y- axes is connected, but, is not irreducible.

Which Kolchin closed subsets are irreducible?
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Lemma 1.12. A Kolchin closed subset V ⊂ An is irreducible if and only if
I (V ) is prime.

Proposition 1.13. (Kovacic) Let R be a ∂-ring containing Z, and, let i be
a proper ∂-ideal of R. The following are equivalent:

1. Let Σ ⊂ R be a multiplicative set such that i∩Σ =Ø. Then, a ∂-ideal
of R maximal among all ∂-ideals of R containing i, and excluding Σ,
is prime.

2.
√
i is a ∂-ideal.

3. Every minimal prime ideal of R containing i is a ∂-ideal.

Corollary 1.14. Let R be a ∂-ring containing the field Q of rational numbers,
and, let i be a proper ∂- ideal of R. An element f of R is in

√
i if and only

if it is in every prime ∂-ideal containing i.

Theorem 1.15. Let i be a proper radical ∂-ideal in U {y1, . . . , yn}. Then, i
can be written uniquely up to order as a finite intersection of minimal prime
ideals. Each minimal prime ideal containing i is a ∂-ideal.

Corollary 1.16. Let V be a Kolchin closed subset of An. Then, V can
be written uniquely (up to order) as a union of distinct maximal irreducible
Kolchin closed subsets, called the irreducible components of V . The irre-
ducible components of V are the zero sets of the minimal prime components
of I(V ). If W is an irreducible subset of V , then, W is contained in a
component of V .

Exercise 1.17. 1. Prove that if V is an irreducible Kolchin closed subset
of An, then, every non-empty Kolchin open subset of V is Kolchin dense
in V .

2. The Kolchin topology is not Hausdorff: Prove that if V is an irreducible
Kolchin closed subset of An, and, U1, U2 are non-empty Kolchin open
subsets of V , then, U1 ∩ U2 6= ∅.

Direct products of ∂-varieties are essential to the definition of groups in
the category. First, we identify the product Ar × As of the sets with Ar+s:
(a, b) = (a1, . . . , ar, b1, . . . , bs) . Then, we place on Ar+s the Kolchin topology.
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If V is a Kolchin closed subset of Ar, and, W is a Kolchin closed subset of
As, then, we place on V ×W the induced Kolchin topology.
If V = V (i), i a ∂-ideal in U {y}, and, W = V (j) , j a ∂-ideal in U {z},

then, V1×V2 = V (iU {y, z}+ jU {y, z}). In particular, if V and, W are ∂-F-
varieties, so is their product. The differential ideal k = iU {y, z}+ jU {y, z}
is generated by ∂-polynomials of the form f (y) and g (z).

Example 1.18. Let U be an ordinary differential field, with derivation op-
erator ∂. We define ∂-subvarieties V and W of affine 1-space A1 as follows:

V = V ([ý − y])
W = V ([ý́]) .

V ×W is the ∂-subvariety of the affine plane A2defined by the differential
ideal [ý − y, ź́] ⊂ U {y, z}. Note the separation of variables in this ∂-variety
that is closed in the product Kolchin topology. This indicates that the
Kolchin topology on the product space is not the product of the Kolchin
topologies.

Note that the product of two irreducible ∂-varieties is irreducible since U
is algebraically closed.

Exercise 1.19. Let C be the curve in A2 defined by the equation y2 = y21.
It is not product closed in the Zariski topology. Show it is not product closed
in the Kolchin topology.

1.2 The ∂-coordinate ring on a ∂-variety.

Definition 1.20. Let R be a ring, and, a ∈ R. a is nilpotent if there is
a positive integer n such that an = 0. R is reduced if R has no nonzero
nilpotent elements.

Let V be a Kolchin closed subset ofAn, and, let i be its defining differential
ideal in U {y}. Then, i is a radical ∂-ideal. Therefore, the residue class ring
R = U {y}, where y is the n-tuple of residue classes mod i, is a reduced
∂-ring. Of course, we define ∂yi = ∂yi. If f(y) ∈ R and, a∈V , we define
f (a) = F (a), where F mod i = f . R is called the ∂-coordinate ring of V .
We often denote it by U {V }. R is an integral domain iff i is prime. (We
will feel free to unbar the residue classes, and write simply yi.)
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There is a bijective correspondence between the ∂-ideals of R and the
∂-ideals of U {y} containing i, given by j 7−→ jmod i. So, there is a bijective
correspondence between the radical ∂-ideals of R and the Kolchin closed
subsets of V , given by j 7−→ V (j). We call jmod i the defining ∂-ideal of
V (j) in R. j is (radical) prime iff jmod i is (radical) prime.j is a minimal
prime containing i iff jmod i is a minimal prime of R. The minimal primes
of R are the defining ∂-ideals in R of the irreducible components of R.
Suppose V is irreducible. The elements of the quotient field of R = U {V }

are called ∂-rational functions on V . It is denoted byU hV i. f is a ∂-rational
function on V iff there exists p, q ∈ R such that f = p

q
. If g = r

s
∈ U hV i

then, f = g iff PS −QR ∈ i, where P mod i = p, Qmod i = q, Rmod i = r,
Smod i = s, T mod i = t.
Let a ∈ V , and, f ∈ U hV i. Then, f is defined at a iff there ex-

ist p, q ∈ R such that f = p
q
, and, q (a) 6= 0. The domain D (f) =

{a ∈ V : f is defined at a} is a non-empty (hence Kolchin dense) subset of
V . f is everywhere defined if D (f) = V . The set of everywhere defined
∂-rational functions on V is a ∂-subring of U hV i containing U {V }, denoted
by bR. So, R ⊂ bR ⊂ U hV i. In a scheme-theoretic approach to differential

algebraic geometry, bR is the ring of global sections of the structure sheaf on
V .

Remark 1.21. 1. In contrast to affine algebraic geometry, R 6= bR. For
example, set V = V ([∂y − y]), where ∂ is the derivation operator on
the ordinary differential field U. Let x ∈ U have derivative 1. Then,
V = {cex : c ∈ K}. U {V } = U[y]. The differential rational functions
1
y−c , c ∈ K, c 6= 0, are everywhere defined on V , and, are not in

U {V } = U[V]. Note that this shows that bR is not finitely ∂-generated
over U.

2. If f ∈ bR, the Noetherianity of the Kolchin topology implies that there
exist a finite number of denominators q such that f = p

q
, and, ∀a ∈ V ,

there exists q in this finite set such that q (a) 6= 0. However, in contrast
to affine algebraic geometry, where we may always take q = 1, we may
need more than one denominator.

On p. 137 of his book Differential algebraic groups, (1985) Kolchin gives
the following example: Let U be an ordinary differential field with derivation
operator ∂. Write ∂y = y0, ∂2y = y00, etc. Let V be the ∂-subvariety of A2,
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defined by the equation (y01+1)y
0
2−y1y002 . Then, V is irreducible. Set f = y2́

y2
.

Then, f = y2́́
y1+1

. f is everywhere defined, but, we need both denominators

to define it everywhere. A proof was given by Kovacic (2002).

Remark 1.22. If V is reducible, with irreducible components V1, . . . , Vk, a
k-tuple f = (f1, . . . , fk), where fi is a differential rational function on Vi, is
called a ∂-rational function on V . D(f) is a Kolchin open dense subset of
V . So, the ring of differential rational functions on V is the direct product
of the differential fields of differential rational functions on its irreducible
components. It is also the complete ring of fractions of its coordinate ring.

1.3 Differential rational maps and morphisms.

Let V be a ∂-subvariety of Ar and letW be a ∂-subvariety of As. A differen-
tial rational map f : V −− > W is an s-tuple f = (f1, . . . , fs) of differential
rational functions on V such that f maps its domain D(f) into W . If the

coordinates of f are in bR, then, we call f a morphism. Differential ratio-
nal maps are our interpretation of the Bäcklund transformations of physics
(variational formalism).
The next theorem, proved in algebraic geometry by Claude Chevalley,

and, later, in differential algebraic geometry by Abraham Seidenberg, is im-
portant for geometry. André Weil refers to it as a “device...that finally
eliminates from algebraic geometry the last traces of elimination theory.” It
is a key theorem in contemporary logic (model theory).

Theorem 1.23. Chevalley-Seidenberg Let V and W be ∂-varieties, and, let
f : V −− > W be a differential rational map. The image of D(f) contains
a set that is Kolchin open and dense in the closure of the image of D(f). If
V and W are ∂-F-varieties, so is the closure of D(f).

Definition 1.24. An irreducible ∂-variety V whose field of differential ratio-
nal functions has finite transcendence degree overU is called finite-dimensional.
dimV = tr degU U hV i.
The ∂-varieties of the following example satisfy partial differential equa-

tions, and, are not finite-dimensional. However, the fibers of the differential
rational map are finite-dimensional. Following Igonin (2005), we might call
the domain variety a covering variety of the image variety.
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I would like to close the sections on differential rational functions and
maps with an example: the transformation of Burgers’equation into the Heat
Equation. Modern interest in integrable systems connected with non-linear
differential equations was sparked by the discovery of solitons by Kruskal and
Zabusky (1978), and, the subsequent close study of the barely non-linear KdV
equation ∂ty = ∂3xy + 6y∂xy. The awareness of solitons dates back, however,
to a horseback ride in 1834.
The Scottish nautical engineer, John Scott Russell writes:

I was observing the motion of a boat which was rapidly drawn
along a narrow channel by a pair of horses, when the boat sud-
densly stopped — not so the mass of water in the channel which it
had put in motion; it accumulated round the prow of the vessel
in a state of violent agitation, then suddenly leaving it behind,
rolled forward with great velocity, assuming the form of a large
solitary elevation, a rounded, smooth and well defined heap of
water, which continued its course along the channel apparently
without change of form or diminution of speed. I followed it on
horseback, and overtook it still rolling on ...preserving its origi-
nal figure some thirty feet long and a foot to a foot and a half in
height.

Our example is less exotic. It illustrates the use of Rosenfeld coher-
ence in proving surjectivity of differential rational morphisms, and, along the
way, connects, at least in this particular example, Rosenfeld coherence with
integrability conditions.

Example 1.25. Kaup (1980) This example of a Bäcklund transformation of
the heat equation into Burgers’ equation illustrates the the Rosenfeld coher-
ence property, and, its connection with the integrability conditions mentioned
by Sally Morrison. Let ∂ = {∂x, ∂t}. Let V be the solution set in A1 of the
heat equation

∂ty + ∂2xy = 0,

and, let W be the solution set of Burgers’ equation (Johannes Martinus
Burgers, 1895-1981), from fluid dynamics:

∂ty + ∂2xy + 2y∂xy = 0.

The Cole-Hopf transformation `∂x =
∂xy
y
maps its domain V \{0} into W

(Exercise).

10



Using Rosenfeld coherence, we will show that the image of the domain of
the Cole-Hopf transformation equalsW , i.e., the transformation is surjective
on its domain. This transformation of Burgers’ equation into the heat
equation helps physicists find exact solutions of Burgers’ equation by finding
exact solutions of the heat equation.
Let z satisfy Burgers’ equation. We want to show that the following

system of equations and inequations has a solution. Set l = [g, h], where

h = ∂2xy + ∂ty

g = ∂xy − zy
∂tz + ∂2xz + 2z∂xz = 0

y 6= 0
Then, l is linear, hence is prime. To solve our problem, we will find a good
characteristic set for l with respect to some ranking. As Sally Morrison and
William Sit pointed out, a characteristic set of a differential polynomial ideal
reduces the ideal to 0. Therefore, y is not in the ideal. We choose an orderly
ranking with ∂t < ∂x. The leader of h is ∂

2
xy. The leader of g is ∂xy.

Reduce h with respect to g (Exercise). Get: h = ∂xg + zg + r, where
r = ∂ty + (z

2 + ∂xz) y.

r = ∂ty +
¡
z2 + ∂xz

¢
y

g = ∂xy − zy,
∂tz + ∂2xz + 2y∂xz = 0

Now, l = [g, h] = [g, r]. The set A : g, r is autoreduced, and, the lowest
common derivative of the leaders is ∂x∂ty. We now compute the Rosenfeld
s-polynomial s = ∂xr − ∂tg.

s =
¡
z2 + ∂xz

¢
∂xy +

¡
∂2xz + 2z∂xz

¢
y + z∂ty + (∂tz)y.

Now, A is coherent iff s is in the ideal (g, r). Find Burgers!

s− ¡z2 + ∂xz
¢
g = zr + b(z)y

s = b(z)y + zr + (z2 + ∂xz)g

So, A is coherent iff b (z) = 0. Burgers’ equation is a coherence condition
on the autoreduced set A. It follows, since l is prime, that A is a charac-
teristic set for l. In particular, if a differential polynomial is reduced with
respect to A, it cannot be in l.
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So, `∂x is a surjective map from its domain V \ {0}, the set of nonzero
solutions of the heat equation onto W , the solution set of Burgers’ equation.
The fiber `∂−1(z), z ∈ W , is the set of solutions of the pair of differential
equations

∂xy

y
= z

∂ty

y
= −(z2 + ∂xz)

This pair of differential equations has a solution ⇐⇒ b (z) = 0. So, Burg-
ers’equation is the integrability condition in the classical sense. The proof
in differential algebraic geometry uses Rosenfeld coherence. Note that the
fiber of `∂x is a ∂-variety that is finite-dimensional, of dimension 1. Each
fiber gives us a finite-dimensional ∂-subvariety of the infinite-dimensional
∂-variety V (h).

2 Affine differential algebraic groups.

Definition 2.1. 1. Let G be a group. G is an affine ∂-group if, for some
n, G is a Kolchin closed subset of An, and, the group multiplication
G×G→ G and inversion G→ G are morphisms of ∂-varieties. If mul-
tiplication and inversion are defined over F, and, the identity element
1 has coordinates in F, we call G a ∂-F-group.

2. Let G be a ∂-group. There is a unique component G0 containing 1,
which is a normal ∂-subgroup whose cosets are the irreducible compo-
nents of G. In particular, the components are mutually disjoint, and,
of course, equal the connected components of G.

3. IfG and Ǵ are affine ∂-groups, a homomorphism f : G→ Ǵ of ∂-groups
is a group homomorphism, and, a ∂-variety morphism.

Remark 2.2. Every affine algebraic group is an affine ∂-group.

1. Let G be a ∂-group, and, let a ∈ G. An important homomorphism of
∂-groups is the inner automorphism x 7−→ axa−1.
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2. The additive group Gna of Un is a ∂-group. Let Li, i = 1, . . . , n ∈
U [∂], the non-commutative ring of linear differential operators (non-
commuting polynomials) in ∂1, . . . , ∂m. Let l be the surjective ∂-
endomorphism of Gna with coordinate functions L1, . . . , Ln. Every
∂-endomorphism of Gna is in this form.

Let f : G→ Ǵ be a ∂-group homomorphism. It is easy to see that ker f
is a normal ∂-subgroup of G. The fact that imf is a subgroup of Ǵ follows
from the Chevalley-Seidenberg Theorem. If G and Ǵ are ∂-F-groups, and,
f is defined over F, then, ker f , and, im f are ∂-F-groups.

If f : G → Ǵ is a homomorphism, f (G0) is the identity component of
im f . So, the image of a connected ∂-group is connected.

Notation 2.3. If G is an affine ∂-F-group, the subgroup of points in G with
coordinates in a ∂-extension field G of F in U is denoted by G (G).

As we saw in Jerry Kovacic’s talks, GLn (U) is a Zariski open set in
An2 =Mn (U). We close it up by identifying it with the ∂-subgroup of An

2+1

defined by the equation z det y = 1, where y = (yij)i,j=1,...,n.is a matrix of

differential indeterminates. The coordinate ring of GLn (U) is U
©
(yij),

1
det

ª
.

When we give the defining equations of a ∂-subgroup of GLn (U), we will
omit the equation z det y = 1, since it is universally satisfied. We denote
GL1 (U) by Gm.

Remark 2.4. Let R be the field of real numbers, and, U a differential closure
of the quotient field F of the ring of real analytic functions on the unit circle
S1. GLn (F) = GLn (R) ⊗R F can be conceptualized as the loop group
Map (S1, GLn (R)).

An affine ∂-group G is linear if there is an isomorphism from G into some
GLn (U). Every affine algebraic group is linear.

Example 2.5. Let U be an ordinary differential field with derivation oper-
ator ∂.

1. The only algebraic group structure on the affine plane A2 (over any al-
gebraically closed field of characteristic 0) is the additive groupGa×Ga.
The following are the ∂-group structures on A2 (up to isomorphism):

(u1, u2) (v1, v2) =

Ã
u1 + v1, u2 + v2 +

X
i<j

u
(i)
1 v

(j)
1

!
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where u(i) = ∂iu. (The sum
P
i<j

u
(i)
1 v

(j)
1 is a differential polynomial 2-

cocycle from Ga into Ga.) These groups are unipotent linear ∂-groups.
The group is “unipotent” since it can be embedded in a group of upper
triangular matrices with 10s on the diagonal.

For example, the group (u1, u2) (v1, v2) =
³
u1 + v1, u2 + v2 + u1v1́ + u1́v

(2)
1

´
is isomorphic to a ∂-group of 4× 4 unipotent matrices:

1 u1 u´1 u2
0 1 0 u1́
0 0 1 u

(2)
1

0 0 0 1


If U is an ordinary differential field, the logicians Pillay and Kowalski
proved that every ∂-group structure with underlying variety An is a
unipotent linear group.

2. (Cassidy-Kovacic) Let t ∈ U, transcendental over Q, with ∂t = 1. Set
G equal to the Kolchin closed subset of A2, defined by the differential
equations:

y2 (y1 − 1)2 = t2
¡
y31 + ay1y

2
2 + by

3
2

¢
∂y1 =

1

t

¡
y21 − y1

¢
y1∂y2 − y2∂y1 = 0.

where a, b ∈ Q, b 6= 0, 4a3 + 27b2 6= 0. G is a connected commutative
∂-Q (t)-group. 0 = (0, 0). Note that y2 = 0 implies y1 = 0, and, that
2y1 − 1 never vanishes on G (Exercise). − (y1, y2) =

³
y1

2y1−1 ,
y2

2y1−1
´
.

Coordinatize G×G by (y1, y2) , (z1, z2). On the open set y1y2(y1z2 −
y2z1) 6= 0, the addition law is given by (v1, v2), where

v1 =
1

t2

µ
y1z2 − z1y2 + y2 − z2

y1z2 − y2z1

¶2
− y1z2 + y2z1

y2z2
.

v2 = − 1
t3

µ
y1z2 − y2z1 + y2 − z2

y1z2 − y2z1

¶3
+

+
1

t
.

µµ
y1z2 − y2z1 + y2 − z2

y1z2 − y2z1

¶µ
y1z2 + y2z1
y2z2

¶
−
µ

z1 − y1
y1z2 − y2z1

¶¶

14



Perhaps you realized that the affine ∂-Q (t)-group G is an embedding
in the affine U-plane of the ∂-subgroup E (K) consisting of the constant
points of the elliptic curve in the projective U-plane with affine equation
y22 = y31 + ay1 + b The embedding is a rational isomorphism defined over
Q (t). G is not linear. G has no non-trivial linear representations. The
proof mainly consists in counting the number of points of order dividing n.
The group of example 1 is not finite-dimensional if the transcendence

degree of U over Q is infinite. The group of example 2 is finite-dimensional.

Problem 2.6. 1. Characterize all affine non-linear differential algebraic
groups

2. When U is an ordinary differentially closed differential field, the lo-
gicians Hrushovski, Sokolovich, and Pong, have shown that all finite-
dimensional ∂-groups can be embedded in the affine U-line. Charac-
terize all affine differential algebraic groups with no non-trivial linear
representations. Are they all commutative? Must they be finite-
dimensional? Are they all obtained by affine ∂-embeddings of abelian
varieties?

3 Linear differential algebraic groups.

For ease of exposition, we reluctantly assume that U is an ordinary differential
field with derivation operator ∂, and field K of constants. As usual, we often
denote ∂y by y0, ∂2y by y00,....Everything in the following discussion has a
parallel in the partial case.
Let G be an affine ∂-group, with coordinate ring U {G} = R, and, ring of

everywhere defined differential rational functions bR. Let a ∈ G. We define
a ∂-automorphism over U of bR by

(fa)(b) = f(ba), f ∈ bR, b ∈ G.
If G = GLn (U), then, (yij)a =

Pn
k=1 yikakj. The map ρ : G → Aut∂bR is

an injective homomorphism of groups, called the regular representation of G.
If G is a subgroup of GLn (U), then, for all a ∈ G, for all f ∈ R, fa is in R.
In this case, we refer to the restriction of the regular representation to R as
the regular representation of G.

15



Theorem 3.1. Let G be a linear ∂-group, and, let N be a normal ∂-subgroup.
There exists a linear ∂-group G0, and, a surjective homomorphism q : G →
G0, with kernel N such that if H is a linear ∂-group, and, f : G → H is a
homomorphism whose kernel contains N , there is a homomorphism g : G0 →
H such that g ◦ q = f .
G0 is called the quotient group of G by N , and, is denoted by G/N .
Let G be a ∂-subgroup of GLn (U), and, let H be a ∂-subgroup of G.

S = {f ∈ R : fa = f ∀h ∈ H} is a ∂-subalgebra over U of R called the ring
of invariant differential polynomal functions of H.
Recall: Not every differential polynomial ideal is finitely differentially

generated (J. F. Ritt). Boris Weisfeiler ingeniously adapted Ritt’s example
to show that, in contrast to algebraic group theory, the ring of invariants in
U {y} (under the regular representation of Gm) of the finite subgroup {±1} is
not finitely ∂-generated. If we replace U {y} by the coordinate ring U

n
y, 1

y

o
,

which is a Hopf algebra, this cannot happen..

Theorem 3.2. If G is a ∂-subgroup of GLn (U), and, N is a normal ∂-
subgroup of G, the subring S ⊂ R of invariant differential polynomial func-
tions of N is finitely ∂-generated.

Corollary 3.3. Let Ǵ = G/N . Then, the coordinate ring U {G }́ is iso-
morphic over U to the ∂-algebra over U of invariants of N in U {G}.
Problem 3.4. Prove that quotients of affine ∂-groups exist. Are they also
affine?

3.1 The differential algebraic subgroups of Gm.
The only proper algebraic subgroup of Ga is {0}. If G is a ∂-subgroup,
there exist linear differential operators L1, . . . , Lr ∈ U [∂] such that G =Tr
i=1 kerLi.
The only proper algebraic subgroups of Gm are the groups G of nth roots

of unity. The defining equation of G is yn−1 = 0. f(y) = yn−1 is also the
defining differential polynomial invariant of G. The next theorem tells us
that all the ∂-subgroups of Gm are defined by a single differential polynomial
invariant in U {Gm (U)} = U

n
y, 1

y

o
= R.
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Theorem 3.5. Let G be a ∂-subgroup of Gm. Then, there is a differential
polynomial f ∈ R such that G = {a ∈ Gm : fa = f}. Moreover, the defining
∂-ideal of G in R is equal to [f ].

What do the defining differential polynomial invariants of infinite ∂-
subgroups of Gm look like? We met the homomorphism that defines all
the invariants of positive order in Jerry’s talks on Picard-Vessiot theory.
We define a surjective homomorphism `∂ : Gm → Ga by the formula

`∂a = ∂a
a
. ker `∂ = Gm (K). So, we have a short exact sequence

1→ Gm (K)→ Gm
`∂→ Ga → 0

Note that Gm (K) is the Kolchin closure of the torsion group of Gm.

Theorem 3.6. Let f be the defining differential polynomial invariant of a
proper infinite ∂-subgroup G of Gm. Then, there is a linear homogeneous
differential operator L = ∂n+a1∂

n−1+. . .+an in U [∂] such that f = L (`∂y).

Example 3.7. f (y) := ∂ (`∂y) = ∂
³
∂y
y

´
. f is a surjective ∂-homomorphism

from Gmonto Ga, with kernel G. We have a short exact sequence

1→ G→ Gm
∂◦`∂→ Ga → 0

The group G leaving f invariant is the group c0e
c1t, where ∂t = 1, and,

∂ (et) = et. G can also be defined as the set of all solutions in Gm of the
second order differential equations y∂2y − (∂y)2 = 0.
Corollary 3.8. Every infinite proper ∂-subgroup G of Gm contains Gm (K),
and, is connected.

Proof. That G ⊃ Gm (K) is clear. That G is connected follows from the fact
that [L (`∂y)] is prime.

Remark 3.9. `∂ defines a 1-1 correspondence between the infinite ∂-subgroups
of Gm and the ∂-subgroups of Ga. There is a parallel of this for the ∂-
subgroup lattice of an elliptic curve E (U) viewed as a ∂-group. If E (U)
does not descend to constants, `∂ is replaced by the Manin homomorphism,
whose kernel is finite-dimensional, of dimension 2̇.

17



3.2 Simple differential algebraic groups.

Definition 3.10. 1. Let G be an affine ∂-group, and V a ∂-variety. An
action ofG on V is a triple (G, V, f), where f is a morphismG×V → V ,
sending (z, x) to zx = f (z, x), such that

1x = x

z1 (z2x) = (z1z2)x

z1, z2 ∈ G, x ∈ V .
2. V is a homogeneous space forG if the action is transitive,i.e., for everyx,
y ∈ V there is z ∈ G such that zx = y. A homogeneous space V is a
torsor under G if there is a unique such z.

3. Let x ∈ V . The set of all z ∈ G such that zx = x is a ∂-subgroup of
G called the isotropy group of x.

Definition 3.11. An infinite algebraic group is simple if it is not commu-
tative, and, every proper normal algebraic subgroup is finite. Similarly, a
∂-group G is simple if it is not commutative, and, every proper normal ∂-
subgroup is finite. In particular, G is connected.

Theorem 3.12. (Pillay) Every simple ∂-group is linear.

Definition 3.13. A Chevalley group is a simple algebraic group that is de-
fined over Q.

Theorem 3.14. (The classification of the simple ∂-groups) Let G be a
simple ∂-group. There exists a simple Chevalley group H such that G is
isomorphic to H (U) or to H (K), the group of matrices in G with entries in
K.

Corollary 3.15. Every simple ∂-group G can be realized as a simple Cheval-
ley group H (U) or as a simple Chevalley group H (K).

For an arithmetic analogue that replaces the derivation ∂ with a nonlinear
operator on a p-adic ring, see Buium (1998).
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3.2.1 The Zariski dense ∂-subgroups of SLn (U).

The first step in the proof of the classification theorem of the simple ∂-
groups G entails embedding G in a simple Chevalley group G as a Zariski
dense ∂-subgroup. Conversely, every Zariski dense ∂-subgroup of a simple
Chevalley group is simple. To illustrate the second step, which describes the
proper Zariski dense ∂-subgroups of a simple Chevalley group H, we take
H = SLn (U).

Definition 3.16. Let k be a field. A vector space g over k is a Lie algebra
if there is a bilinear map m : g× g→ g, sending (a, b) to [a, b] such that:

1. [a, a] = 0. antisymmetry =⇒ [b, a] = − [a, b]
2. [a, [b, c]] + [b, [c, a] + [c, [a, b]] = 0 Jacobi identity

The vector spaceMn (U) is a Lie algebra over U. If A and B are matrices,
[A,B] = AB − BA. It is denoted by g`n (U). It is the Lie algebra of
matrices of GLn (U). The Lie subalgebra that interests us is s`n (U) =
{A ∈ s`n (U) : tr(A) = 0}. It is the Lie algebra of matrices of SLn (U).
SLn (U) acts on s`n (U) by the adjoint action: Ad(Z) : A 7−→ ZAZ−1, Z ∈

SLn (U),A ∈ s`n (U). The adjoint action maps SLn (U) into the automor-
phism group of the Lie algebra s`n (U). Its kernel is the center {$ 1n : ω

n = 1}.
In differential algebraic geometry, as well as in Picard-Vessiot theory,

there is another action of SLn (U) on s`n (U), called the gauge action. It is
built from the logarithmic derivative morphism.`∂ : GLn (U)→ g`n (U):

`∂(Z) = ∂Z Z−1.

If Z = (zij), ∂Z = (∂zij). Now, tr (`∂ (Z)) = `∂ (det(Z)) (Exercise). So,
`∂ maps SLn(U) into s`n (U). One can show that it is surjective since U is
differentially closed.
Although `∂ is a morphism of ∂-varieties, it is not a homomorphism of

groups.
`∂ (Z1Z2) = `∂ (Z1) + Z1`∂ (Z2)Z

−1
1

`∂ is what we call a crossed homomorphism (1-cocycle), with respect to the
adjoint action. Thus, it has a kernel, which is SLn (K).
`∂ gives rise to the gauge action of the ∂-group SLn (U) on its Lie algebra

s`n (U).
A 7−→ ZAZ−1 + `∂ (Z) = `∂ (Z) + ZAZ−1.
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Since U is differentially closed, s`n (U) is a homogeneous space for the special
linear group under this action. If we restrict the actors and actees to an
arbitrary base field F, the action may no longer be transitive. The orbits
then play an important role in Picard-Vessiot theory.

Remark 3.17. Let V be a finite-dimensional vector space. The affine group
of V is the group of all transformations v 7−→ T (v)+w, where T is linear and
w ∈ V . The gauge action maps SLn (U) into the affine group of the vector
space s`n (U) over U. The affine group is a linear group, and, so, as in the
case of the adjoint action, the gauge action gives us a linear representation
of SLn (U)— this time as a differential algebraic group, rather than as an
algebraic group. What is the kernel of this representation? Setting A = 0,
we see that Z ∈ SLn (K). But, then, Z is in ker Ad, which is the center of
SLn (U). So, the adjoint action and the gauge action have the same kernel.

Let A ∈ s`n (U). The isotropy group G of A in SLn (U) under the gauge
action is defined by the differential equations

detY = 1

A = Y AY −1 + ∂Y Y −1

The second equation is a matrix equation, which is usually written ∂Y =
AY − Y A = [A, Y ], and, is called a Lax equation. Lax equations play an
important part in the isomonodromy approach to Painlevé theory. The
equation gives rise to n2 linear homogeneous differential polynomial equa-
tions. It is easy to see that the isotropy group of A is a proper Zariski dense
∂-subgroup of SLn(U).
The main step in the classification theorem is the following theorem.

Recall that a ∂-F-subgroup of GLn(U) is a ∂-subgroup that is defined over
F.

Theorem 3.18. Let G be a proper Zariski dense ∂-F-subgroup of SLn (U)
Then, there is a matrix A ∈ s`n (F) such that G is the isotropy group of A
under the gauge action.

Corollary 3.19. Let G be a proper Zariski dense ∂-F-subgroup of SLn (U).
Then, there is a Picard-Vessiot extension G of F and a matrix T ∈ s`n (G)
such that T−1GT = SLn (K).
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Proof. Since the logarithmic derivative morphism is surjective, there is a
matrix T ∈ SLn (U) such that `∂(T ) = A. Indeed, we can find such a
matrix T generating a Picard-Vessiot extension of F. Let Z ∈ G. We will
not prove here that we can find a matrix T that is Picard-Vessiot over F.

`∂
¡
T−1ZT

¢
= `∂

¡
T−1

¢
+ T−1`∂ (ZT )T

= T−1(−`∂ (T ) + `∂ (Z) + Z`∂ (T )Z−1)T
= T−1

¡−A+ `∂ (Z) + TAT−1¢
= 0.

Therefore, T−1ZT ∈ SLn (K). Similarly, one can show that TSLn (K)T−1
is the isotropy group of A = `∂ (T ) under the gauge action of SLn (U) on
s`n (U).

4 The Action of SL2 on Riccati varieties.

This is the story of configurations of 4 points on the projective line. It is
a plain and casual narrative, intending to show the connection between the
gauge action of differential equations theory, and, projective linear transfor-
mations, and, between circles in the extended complex plane and Riccati
varieties.
You may ask what 4 points on the projective line have to do with simple

differential algebraic groups. Have patience, and you will find out.
For an engrossing, clearly written, modern treatment of the configuration

space of 4 points on the complex projective plane, see Masaaki Yoshida,
Hypergeometric Functions, My Love, 1997. Yoshida dedicates his book to
his cats, and, his “dog, Fuku, who came to my house from nowhere to live
with me.”
Recall the Riccati equation from the lectures on Picard-Vessiot theory

R (a0, a1, a2) : y0 = a0 + a1y + a2y2, (a0, a1, a2) ∈ U3,

A ∂-subvariety of A1(U) defined by a Riccati equation is called a Riccati
variety. Note that there is a 1-1 correspondence between the set of Riccati
equations and U3.
The differential algebraic geometry of a Riccati variety is interesting. We

embed it in the projective line P1 (U).
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Let k be a field. P1 (k) is the set of equivalence classes of pairs

(u1, u2) ∈ A2 (k) (u1, u2) 6= 0,
under the equivalence relation

(u1, u2) ∼ (λu1,λu2) λ ∈ k,λ 6= 0.
The class of (u1, u2) is denoted by [u1, u2].
A polynomial P ∈ k [y1, y2] is homogeneous if there is a positive integer

d such that for all λ ∈ k, P (λy1,λy2) = λdP (y1, y2). A subset of P1(k) is
Zariski closed if it is the set of zeros of a finite set of homogeneous polynomials
in k [y1, y2].
Similarly, a differential polynomial P ∈ U{y1, y2} is ∂-homogeneous if

there is a positive integer d such that for all λ ∈ U, P (λy1,λy2) = λdP (y1, y2).
Clearly, P must be a homogeneous polynomial. A subset of P1(U) is Kolchin
closed if it is the set of zeros of a finite set of ∂-homogeneous differential
polynomials in U{y1, y2}.
We refer to the equivalence classes [u1, u2] as points on the projective line.
P1(k) is covered by 2 affine open patches: y2 6= 0, and, y1 6= 0. We

are interested only in the patch O : y2 6= 0. The point “at infinity” (not in
O) is [1, 0], which is in the other affine open patch. If [u1, u2] ∈ O, then,
[u1, u2] = [u, 1], where u =

u1
u2
. So, we identify O with A1 (k) by the map

[u1, u2] 7−→ u.
We identify P1(k) with the extended k-line k ∪ {∞} = O ∪ {[1, 0]}.
Set k = U. K = U∂. The Kolchin closed set P1 (K) = {[c1, c2] : c1, c2 ∈ K}

is defined by the differential polynomial

y2y
0
1 − y02y1.

For the action of SL2 on the set of Riccati equations, see “Integrability of
the Riccati equation from a group theoretical viewpoint,” José F. Cariñena,
Artur Ramos, arXiv.org.math-ph19810005.
If V is the Riccati variety defined by R (a0, a1, a2), we embed it in the

projective line as follows:
We homogenize R (a0, a1, a2): Set y =

y1
y2
.µ

y1
y2

¶0
= a0 + a1

y1
y2
+ a2

µ
y1
y2

¶2
.
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Multiply through by y22. The homogenization is:

y01y2 − y1y02 = a0y22 + a1y1y2 + a2y21.

Lemma 4.1. The affine Riccati variety equals its projective closure if and
only if a2 6= 0.
Proof. The point [1, 0] at infinity satisfies the homogenization of the Riccati
equation iff a2 = 0.

Let k be any field of characteristic zero. PGL2(k) is the group consisting
of all projective linear transformations :

τ(u) =
αu+ β

γu+ δ
M =

µ
α β
γ δ

¶
∈ GL2 (k) .

Note that the transformation may send u ∈ O “to ∞.” This happens when
u = − δ

γ
. τ is invertible, with inverse represented by M−1.

The map M 7−→ τ , defined as above, is a surjective homomorphism from

GL2(k) onto PGL2 (k)with kernel the center

µ
α 0
0 α

¶
,α ∈ Gm(k). It

defines on PGL2(k) the structure of algebraic group. If k = U, it has
defined on it the canonical structure of differential algebraic group. Both of
these structures are inherited from the general linear group.

Suppose k is algebraically closed. Let M =

µ
α β
γ δ

¶
∈ GL2 (k).

Then, 1√
detM

M =

Ã
α√
detM

β√
detM

γ√
detM

δ√
detM

!
∈ SL2(k) and has the same image

in PGL2 (k). So, PGL2 (k) = PSL2 (k).

Remark 4.2. 1. Given a projective linear transformation

τ(u) =
αu+ β

γu+ δ
,

represented by the matrix M =

µ
α β
γ δ

¶
. Then, τ (∞) = ∞ if and

only if

µ
α
γ

¶
=M

µ
1
0

¶
=

µ
α
0

¶
.
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So, the projective linear transformations fixing ∞ are the affine trans-
formations τ (u) = εu+ η, ε ∈ Gm(k), η ∈ Ga (k).

J (u) = 1
u
, represented by M =

·
0 1
1 0

¸
, interchanges 0 and ∞.

2. Let k = C, the field of complex numbers. Projective linear transfor-
mations of C ∪ ∞ are often called Möbius transformations, and, the
extended C-line is called the extended complex plane.
When k is algebraically closed, PGL2(k) is connected. However, this
need not be the case if k is not algebraically closed.

PGL2 (R) is not connected. Multiply M ∈ GL2(R) by 1√
|detM | .

Then, det

µ
1√

|detM |M
¶
= ±1, and, the images of M and 1√

|detM |M in

PGL2 (R) are the same. We may assume, therefore, that detM = ±1.

The matrix

µ
0 1
1 0

¶
has determinant −1, and, its square is the iden-

tity matrix. Therefore, if detM = −1,M =

µ
0 1
1 0

¶µµ
0 1
1 0

¶
M

¶
.

Thus, PGL2(R) has two components: PSL2(R) and the projective
transformations associated with matrices in GL2(R) with determinant
−1.
PGL2 (R) = PSL2(R)∪ J ·PSL2(R), where J (u) = 1

u
, represented byµ

0 1
1 0

¶
.

Lemma 4.3. Given a triple (u1, u2, u3) of distinct points in P1(k), there is a
unique projective linear transformation λ mapping (u1, u2, u3) onto (0, 1,∞).
It is given by the formula:

λ (u) =
(u− u1)(u2 − u3)
(u1 − u2) (u3 − u)

Note that the determinant of the representing matrix is

(u1 − u2) (u2 − u3) (u3 − u1).

So, it is invertible.
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Definition 4.4. λ (u) is called the cross-ratio (anharmonic ratio) of the
quadruple (u, u1, u2, u3).

Remark 4.5. The definition of cross-ratio is dependent on the order of
the points u, u1, u2, u3. There are 6 values of the cross-ratio under the 24
permutations of u, u1, u2, u3 :

λ, 1− λ,
1

λ
,

λ

λ− 1 ,
1

1− λ
,
λ− 1
λ

.

Corollary 4.6. Given two triples (u1, u2, u3), (v1, v2, v3) of distinct points in
P1(k), there is a unique projective linear transformation τ mapping (u1, u2, u3)
onto (v1, v2, v3).

Corollary 4.7. Let (u, u1, u2, u3) and (v, v1, v2, v3)be quadruples of points in
P1 (k) such that u1, u2, u3 are distinct, as are v1, v2, v3. Then, there is a
projective linear transformation τ mapping (u, u1, u2, u3) onto (v, v1, v2, v3) if
and only if their cross-ratios are equal.

Proof. Suppose the transformation τ maps (u, u1, u2, u3) onto (v, v1, v2, v3).
Let υ be the unique transformation mapping (v1, v2, v3) onto(0, 1,∞). Then,
υ (v) = λ (v). υτ (u, u1, u2, u3) = (λ (u) , 0, 1,∞) = υ (v, v1, v2, v3) = (λ (v) , 0, 1,∞).
So, their cross-ratios are equal.
Conversely, suppose λ (u) = λ (v) . Then, there exists υ, τ such that

υ (u, u1, u2, u3) = (λ, 0, 1,∞) = τ (v, v1, v2, v3). Therefore, υ
−1τ (u, u1, u2, u3) =

(v, v1, v2, v3).

Corollary 4.8. Cross-ratio is an invariant of the projective linear group.

A circle (which may be a straight line) in the extended complex plane
C ∪ {∞} is uniquely determined by a triple (u1, u2, u3) of points on the
circle. The unique circle passing through (0, 1,∞) is R ∪ {∞}.
All affine transformations τ (u) = αu + β, α ∈ Gm (C) , β ∈ Ga (C),

transform circles into circles, since multiplication by α rotates and perhaps
stretches or contracts the circle, and, translation moves the circle to another
center. The transformation u 7−→ 1

u
reflects the circle in the real axis and

perhaps stretches or contracts. So,

Lemma 4.9. Every projective linear transformation maps a circle onto a
circle.
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We now show that PSL2 (C) acts transitively on the set of circles in the
extended complex plane.

Proposition 4.10. Let C and C 0 be circles in the extended complex plane.
Then, there is a projective linear transformation τ mapping C onto C 0.

Proof. Let (u1, u2, u3) be a triple of distinct points on C, and, (v1, v2, v3)
be a triple of distinct points on C 0. Let τ be the unique transformation
mapping (u1, u2, u3) onto (v1, v2, v3). τ (C) is a circle containing (v1, v2, v3).
Therefore, τ (C) = C 0.

Proposition 4.11. Let C be the circle in the extended complex plane through
three distinct points u1, u2, u3. Then,C is the set of all points u ∈ P1(C) such
that the cross-ratio

λ (u) =
(u− u1)(u2 − u3)
(u1 − u2) (u3 − u)

of (u, u1, u2, u3) is in P1 (R) = R ∪ {∞}.
Proof. Let τ be the transformation that carries (u1, u2, u3) to (0, 1,∞). Then,
τ (C) = P1 (R).

Definition 4.12. Let k be a field, and let S ⊂ P1(k). The set of all
projective linear transformations τ mapping S into S (restricting to self-
maps of S) is a subgroup of PGL2 (k), called the stabilizer of S, and is
denoted by G (S).

Theorem 4.13. Let C be a circle in P1 (C). The stabilizer G(C) is conjugate
to PGL2 (R).

Proof. There exists a projective linear transformation τ such that τ (C) =
P1 (R). The stabilizer G (P1 (R)) = PGL2 (R). Therefore, it is not hard to
see that τG(C)τ−1 = G (P1 (R)).

Let τ be in PGL2 (R). Since τ is a homeomorphism (of the Riemann
sphere), it maps each of the disks bounded by C onto a disk bounded by
P1 (R), namely, onto the upper half plane U or onto the lower half plane
L. The stabilizer G (U) of the upper half plane is PSL2 (R), and, since the
inversion map J maps U onto L, if the matrix representing τ has determi-
nant −1, τ interchanges the upper and lower half planes. Let S ∈ SL2(R)
represent a transformation σ ∈ PSL2 (R), and, let T ∈ SL2(C) represent
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τ ∈ PGL2(C). Then T−1ST represents τ−1στ . det(T−1ST ) = 1. So,
T−1ST ∈ SL2 (C). So, we have:

Theorem 4.14. The stabilizer G in SL2(C) of a circle C in the extended
complex plane under the action by PSL2 (C) is conjugate in SL2(C) to
SL2(R). G also stabilizes each disk bounded by the circle.

4.1 The action of SL2 (U) on the set of Riccati varieties

We identify the set of Riccati equations R (a0, a1, a2) : y
0 = a0 + a1y + a2y2

with U3 : R (a0, a1, a2) 7−→
 a0
a1
a2

. SL2 (U) acts on the set of Riccati

equations as follows:

Let Z =

µ
α β
γ δ

¶
,αδ − βγ = 1. Map

 a0
a1
a2

 to

 b0
b1
b2

, where
 b0
b1
b2

 =

 α2 −αβ β2

−2αγ αδ + βγ −2βδ
γ2 −γδ δ2

 a0
a1
a2

+
 αβ0 − α0β
2 (α0δ − β0γ)
γδ0 − γ0δ

 .
This action transforms R (a0, a1, a2) into R (b0, b1, b2). The inverse transfor-
mation is a0

a1
a2

 =

 δ2 βδ β2

2δγ αδ + βγ 2αβ
γ2 αγ α2

 b0
b1
b2

+
 βδ0 − β0δ
2 (αδ0 − β0γ)
αγ0 − α0γ

 .
Lemma 4.15. Let V be the Riccati variety defined by R (a0, a1, a2). Let

Z =

µ
α β
γ δ

¶
,αδ − βγ = 1.. The projective linear transformation

τ (u) =
αu+ β

γu+ δ

transforms V into the Riccati varietyW defined by R (b0, b1, b2), where R (b0, b1, b2)
is the transform by Z of Riccati equation R (a0, a1, a2).
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Proof. A tedious but straightforward computation shows that τ(V ) ⊂ W .
τ−1 then maps W into V . So, τ restricts to an isomorphism of V onto
W .

Corollary 4.16. Every projective linear transformation in PSL2 (U) maps
a Riccati variety onto a Riccati variety.

Corollary 4.17. Let (u1, u2, u3) be a triple of distinct points in P1 (U).
There is a unique Riccati variety containing u1, u2, u3.

Proof. Let τ−1(u) = αu+β
γu+δ

be the unique transformation mapping (u1, u2, u3)

onto (0, 1,∞). Then, τ maps the Riccati variety P1 (K) onto a Riccati variety
V containing u1, u2, u3. IfW is a Riccati variety containing the three points,
then, τ (P1 (K)) =W = V .

Corollary 4.18. Let V be the Riccati variety in the extended U-line through
three distinct points u1, u2, u3. Then, V is the set of all points u ∈ P1(U)
such that the cross-ratio

λ (u) =
(u− u1)(u2 − u3)
(u1 − u2) (u3 − u)

of u, u1, u2, u3 is in P1(K).

Corollary 4.19. Let V be the Riccati variety in the extended U-line through
three distinct points u1, u2, u3. Then, V is the set of all points u ∈ P1(U)
such that

u =
c (u1 − u2) + u1(u2 − u3)
c(u1 − u2) + (u2 − u3) , c ∈ P

1(K).

This formula, called a superposition principle, gives us the transformation
τ . We have represented τ by a matrix in GL2(U). det τ = (u1 − u2)(u2 −
u3)(u3−u1). Notice that the elements of the Riccati variety depend rationally
on one “arbitrary constant.” In differential equations theory, the Riccati
equation is a differential equation with no movable singularities (movable
poles are allowed).
What do the stabilizers of Riccati varieties look like?

Theorem 4.20. The stabilizer G(V ) of a Riccati variety in PSL2 (U) is
conjugate to PSL2 (K).

Proof. Let τ be a projective linear transformation mapping V onto P1 (K).
The stabilizer of P1 (K) is PSL2 (K). τG(V )τ−1 = PSL2(K).
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4.2 The gauge action revisited

Recall that the gauge action of SL2 (U) on its Lie algebra sl2(U) is defined
by the formula:

A 7−→ ZAZ−1 + ∂Z Z−1 A ∈ sl2(U), Z ∈ SL2(U).

The inverse of the gauge transformation by Z is

A 7−→ Z−1AZ − Z−1∂Z.

We now describe this affine transformation of sl2 (U) explicitly. We
choose the following basis of sl2 (U):

E0 =

µ
0 1
0 0

¶
, E1 =

1

2

µ
1 0
0 −1

¶
, E2 =

µ
0 0
−1 0

¶
.

Write A = a0E0 + a1E1 + a2E2 Then,

ZAZ−1 + ∂Z Z−1 = b0E0 + b1E1 + b2E2,

where b0
b1
b2

 =

 α2 −αβ β2

−2αγ αδ + βγ −2βδ
γ2 −γδ δ2

 a0
a1
a2

+
 αβ0 − α0β
2 (α0δ − β0γ)
γδ0 − γ0δ

 .The
inverse is

 a0
a1
a2

 =

 δ2 βδ β2

2δγ αδ + βγ 2αβ
γ2 αγ α2

 b0
b1
b2

+
 βδ0 − β0δ
2 (αδ0 − β0γ)
αγ0 − α0γ

 .
Note that the gauge action of SL2 (U) on sl2 (U) is the same as the action,

described in section 4.1, of SL2 (U) on the set of Riccati equations.
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Proposition 4.21. Let G be a proper Zariski dense ∂-subgroup of SL2 (U).
There exists a projective Riccati variety V such that V is a homogeneous space
for G under the action of G on P1 (U) by projective linear transformations.
G is the isotropy group under the gauge action of the matrix A representing
the defining equation of V .

Proof. G is the isotropy group under the gauge action of a matrix A =
a0E0+a1E1+a2E3. The matrix A represents a Riccati equationR (a0, a1, a2).
We set V equal to the projective variety defined by the Riccati equation
R (a0, a1, a2). G fixes R (a0, a1, a2), since it fixes A under the gauge action.
Therefore, the image G0 of G in the projective special linear group stabilizes
V . Let τ be the unique transformation such that τ (V ) = P1 (K). Let u
and v be in V . Let c = τ (u), and, d = τ (v). PSL2 (K) acts transitively
on P1 (K). So, there is a transformation σ ∈ PSL2 (K), with σ (c) = d.
Therefore, τ−1 ◦ σ ◦ τ maps u to v, and, is in G(V ).
So, we know that the stabilizers of Riccati varieties in the projective

special linear group PSL2 (U)are precisely the images of simple ∂-groups that
can be embedded in SL2(U) as proper subgroups. Note that if we know one
element u0 in a Riccati variety V then we can describe every element u in V
as follows:

u =
αu0 + β

γu0 + δ
,

where Z =

µ
α β
γ δ

¶
is in the isotropy group in SL2(U) of the matrix A

∈ sl2(U) under the gauge action.
For the saga of circles in the extended complex plane and their stabi-

lizers, see Hans Schwerdtfeger, Geometry of Complex Numbers, 1962, and,
Daniel Pedoe, Circles: A Mathematical Point of View, both republished by
Dover Publications in 1979. An excellent discussion of Möbius transforma-
tions, cross-ratio, and, circles, from the point of view of complex function
theory, is Gareth A. Jones, and David Singerman, Complex Functions: An
Algebraic and Geometric Viewpoint, 1987. For a contrasting discussion of
Riccati varieties from the viewpoint of differential equations theory, see Earl
D. Rainville, Intermediate Differential Equations, 1943.
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