Picard-Vessiot theory, algebraic groups and group schemes

Jerald J. Kovacic

Department of Mathematics

The City College of The City University of New York

New York, NY 10031

email: jkovacic@verizon.net

URL: mysite.verizon.net/jkovacic

September 30, 2005

Abstract

We start with the classical definition of Picard-Vessiot extension. We show that the Galois group is an algebraic subgroup of $\mathrm{GL}(n)$. Next we introduce the notion of Picard-Vessiot ring and describe the Galois group as spec of a certain subring of a tensor product. We shall also show existence and uniqueness of Picard-Vessiot extensions, using properties of the tensor product. Finally we hint at an extension of the Picard-Vessiot theory by looking at the example of the Weierstraß \wp -function.

We use only the most elementary properties of tensor products, spec, etc. We will define these notions and develop what we need. No prior knowledge is assumed.

1 Introduction

Throughout this talk we fix an ordinary ∂ -field $\mathcal F$ of characteristic 0 and with algebraically closed field of constants

$$\mathfrak{C}=\mathfrak{F}^{\partial}$$

If you want, you may assume that $\mathcal{F} = \mathbb{C}(x)$ is the field of rational functions of a single complex variable.

I usually use the prefix ∂ - instead of the word "differential". Thus I speak of ∂ -rings and ∂ -fields, ∂ -ideals, etc.

2 Classical Picard-Vessiot theory

We consider a linear homogeneous ∂ -equation

$$L(y) = y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_0y = 0$$

Definition 2.1. By a fundamental system of solutions of L(y) = 0, we mean a set η_1, \ldots, η_n of elements of some ∂ -extension field \mathfrak{G} of \mathfrak{F} such that

- 1. $L(\eta_i) = 0$,
- 2. η_1, \ldots, η_n are linearly independent over \mathcal{C} .

We usually write $\eta = (\eta_1, \dots, \eta_n)$ for the row vector.

Definition 2.2. By a *Picard-Vessiot extension for L* we mean a ∂ -field \mathcal{G} containing \mathcal{F} such that

- 1. $\mathfrak{S}^{\partial} = \mathfrak{F}^{\partial} = \mathfrak{C}$,
- 2. $\mathfrak{G} = \mathfrak{F}\langle \eta_1, \dots, \eta_n \rangle$ where η_1, \dots, η_n is a fundamental system of solutions of L(y) = 0.

Definition 2.3. Suppose that \mathcal{G} is a Picard-Vessiot extension. Then the group of ∂ -automorphisms of \mathcal{G} over \mathcal{F} ,

$$G(\mathfrak{G}/\mathfrak{F}) = \partial - \operatorname{Aut}(\mathfrak{G}/\mathfrak{F})$$

is called the *Galois group* of \mathfrak{G} over \mathfrak{F} .

Proposition 2.4. Suppose that \mathfrak{G} is a Picard-Vessiot extension. If $\sigma \in G(\mathfrak{G}/\mathfrak{F})$ then there is an invertible matrix $c(\sigma)$ with constant coefficients such that

$$\sigma \eta = \eta c(\sigma).$$

The mapping

$$c: G(\mathcal{G}/\mathcal{F}) \to GL(n)$$

is an injective homomorphism.

Proof. The easiest way to see this is to look at the Wronskian matrix.

$$W = \begin{pmatrix} \eta_1 & \cdots & \eta_n \\ \eta'_1 & \cdots & \eta'_n \\ \vdots & & \vdots \\ \eta_1^{(n-1)} & \cdots & \eta_n^{(n-1)} \end{pmatrix}$$

Because η_1, \ldots, η_n are linearly independent over \mathcal{C} the Wronskian is invertible.

A simple computation shows that

$$W' = \begin{pmatrix} \eta_1' & \cdots & \eta_n' \\ \eta_1'' & \cdots & \eta_n'' \\ \vdots & & \vdots \\ \eta_1^{(n)} & \cdots & \eta_n^{(n)} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & 1 & & \vdots \\ \vdots & 0 & \ddots & & \vdots \\ \vdots & & \ddots & 1 & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ -a_0 - a_1 \cdots & -a_{n-2} - a_{n-1} \end{pmatrix} \begin{pmatrix} \eta_1 & \cdots & \eta_n \\ \eta_1' & \cdots & \eta_n' \\ \vdots & & \vdots \\ \eta_1^{(n-1)} & \cdots & \eta_n^{(n-1)} \end{pmatrix}$$

i.e.

$$W'W^{-1} = A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & 0 & 1 & & \vdots \\ \vdots & 0 & \ddots & & \vdots \\ \vdots & & \ddots & 1 & 0 \\ 0 & \dots & \dots & 0 & 1 \\ -a_0 - a_1 \dots & -a_{n-2} - a_{n-1} \end{pmatrix}$$

The matrix A is called the *companion matrix* for L.

Differentiate

$$c(\sigma) = W^{-1}\sigma W$$

and you get 0, so $c(\sigma) \in GL_{\mathcal{C}}(n) = GL(\mathcal{C})$. The first row of W is η so

$$\sigma W = Wc(\sigma)$$
 implies that $\eta = \eta c(\sigma)$.

Suppose that $\sigma, \tau \in G(\mathfrak{G}/\mathfrak{F})$. Then

$$c(\sigma\tau) = W^{-1}\sigma(Wc(\tau)) = W^{-1}\sigma(W)c(\tau) = c(\sigma)c(\tau),$$

because $c(\tau)$ has constant coordinates and therefore is left fixed by σ . Therefore c is a homomorphism of groups. c is injective since $\mathfrak{G} = \mathfrak{F}\langle \eta \rangle = \mathfrak{F}(W)$.

3 Algebraic subgroups of GL(n)

Here we take a "classical" point of view, later on we shall be more "modern" and use group schemes.

We start by putting a topology on "affine m-space"

$$\mathbb{A}^m = \mathbb{C}^m$$

Definition 3.1. A subset X of \mathbb{A}^m is Zariski closed if there exists a finite set of polynomials in m variables

$$f_1,\ldots,f_r\in \mathbb{C}[X_1,\ldots,X_m]$$

such that X is the "zero set" of $f_1 = \cdots = f_r = 0$, i.e.

$$X = \{(a_1, \dots, a_m) \in \mathbb{C}^m \mid f_1(a_1, \dots, a_m) = \dots = f_r(a_1, \dots, a_m) = 0\}.$$

We can drop the adjective "finite" in the definition. Indeed X being the zero set of a collection f_i ($i \in I$) of polynomials is equivalent to saying that X is the zero set of the entire ideal

$$\mathfrak{a} = ((f_i)_{i \in I})$$

and even the radical ideal

$$\sqrt{\mathfrak{a}} = \{ f \mid f^e \in \mathfrak{a} \text{ for some } e \in \mathbb{N} \}$$

By the Hilbert Basis Theorem this ideal is generated by a finite number of polynomials.

Theorem 3.2. (Hilbert Nullstellensatz) There is a bijection between closed subsets of \mathbb{A}^m and radical ideals of $\mathbb{C}[X_1, \ldots, X_m]$.

Now let's put a topology on GL(n), the set of invertible $n \times n$ matrices with coefficients in C. We do this by embedding GL(n) into \mathbb{A}^{n^2+1} :

$$\begin{pmatrix} c_{11} & \cdots & c_{1n} \\ \vdots & & \vdots \\ c_{n1} & \cdots & c_{nn} \end{pmatrix} \longmapsto (c_{11}, \dots, c_{1n}, \dots, c_{n1}, \dots, c_{nn}, 1/\det c_{ij}) \in \mathbb{A}^{n^2+1}.$$

The image is closed, it is the zero set of

$$\det(X_{ii})Y = 1$$

where Y is the $(n^2 + 1)^{st}$ coordinate.

Definition 3.3. A subset $X \subset GL(n)$ is Zariski closed is if it closed in the subset topology as a subset of \mathbb{A}^{n^2+1} .

Definition 3.4. A linear algebraic group is a closed subgroup of GL(n) for some n.

4 The Galois group of a Picard-Vessiot extension

In this section \mathcal{G} is a Picard-Vessiot extension of \mathcal{F} .

Proposition 4.1. The image of

$$c: G(\mathfrak{G}/\mathfrak{F}) \to \mathrm{GL}(n)$$

is an algebraic subgroup of GL(n).

Proof. Let y_1, \ldots, y_n be ∂ -indeterminates over \mathcal{F} . This means that

$$y_1, \ldots, y_n, y'_1, \ldots, y'_n, y''_1, \ldots, y''_n, \ldots$$

is an infinite family of indeterminates over \mathcal{F} . We use vector notation and write $y = (y_1, \dots, y_n)$. Then

$$\mathfrak{F}{y} = \mathfrak{F}[y, y', \dots]$$

is a polynomial ring in an infinite number of variables. There is a homomorphism ϕ over \mathcal{F} , called the *substitution homomorphism*, defined by

$$\phi \colon \mathfrak{F}\{y\} \longrightarrow \mathfrak{F}\{\eta\}$$
$$y_i \longmapsto \eta_i$$
$$y_i' \longmapsto \eta_i'$$
$$\vdots$$

Evidently, it is a ∂ -homomorphism. Let \mathfrak{p} be its kernel

$$0 \longrightarrow \mathfrak{p} \longrightarrow \mathfrak{F}\{y\} \stackrel{\phi}{\longrightarrow} \mathfrak{F}\{\eta\} \longrightarrow 0$$

For $C \in GL(n)$ we let ρ_C be the substitution homomorphism

$$\rho_C \colon \mathfrak{F}\{y\} \longrightarrow \mathfrak{F}\{y\}$$
$$y \longmapsto yC$$

This means

$$y_i \longmapsto \sum_i y_j C_{ji}$$
.

Lemma 4.2. C is in the image of $c: G(\mathcal{G}/\mathcal{F}) \to GL(n)$ if and only if

$$\rho_C \mathfrak{p} \subset \mathfrak{p} \qquad and \qquad \rho_{C^{-1}} \mathfrak{p} \subset \mathfrak{p}$$

(This is equivalent to $\rho_C \mathfrak{p} = \mathfrak{p}$.)

Proof. Suppose that $C = c(\sigma)$ for some $\sigma \in G(\mathcal{G}/\mathcal{F})$. We have both

$$\sigma \eta = \eta C$$
 and $\rho_C y = y C$

We have the commutative diagram:

$$0 \longrightarrow \mathfrak{p} \longrightarrow \mathfrak{F}\{y\} \stackrel{\phi}{\longrightarrow} \mathfrak{F}\{\eta\} \longrightarrow 0$$

$$\downarrow^{\rho_C} \qquad \qquad \downarrow^{\sigma}$$

$$0 \longrightarrow \mathfrak{p} \longrightarrow \mathfrak{F}\{y\} \stackrel{\phi}{\longrightarrow} \mathfrak{F}\{\eta\} \longrightarrow 0$$

To show that $\rho_C \mathfrak{p} \subset \mathfrak{p}$, we "chase" the diagram. If $a \in \mathfrak{p}$ then $\phi a = 0$ so

$$0 = \sigma(\phi a) = \phi(\rho_C a)$$

which implies that

$$\rho_C a \in \ker \phi = \mathfrak{p}$$
.

We have shown that

$$\rho_C \mathfrak{p} \subset \mathfrak{p}$$
.

For the other inclusion, use σ^{-1} .

Now suppose that $\rho_C \mathfrak{p} = \mathfrak{p}$. Then there is a ∂ -homomorphism ψ

$$0 \longrightarrow \mathfrak{p} \longrightarrow \mathfrak{F}\{y\} \stackrel{\phi}{\longrightarrow} \mathfrak{F}\{\eta\} \longrightarrow 0$$

$$\downarrow^{\rho_C} \qquad \downarrow^{\rho_C} \qquad \qquad \downarrow^{\psi}$$

$$0 \longrightarrow \mathfrak{p} \longrightarrow \mathfrak{F}\{y\} \stackrel{\phi}{\longrightarrow} \mathfrak{F}\{\eta\} \longrightarrow 0$$

In fact ψ is defined by

$$\psi a = \phi(\rho_C A), \quad \text{where} \quad \phi A = a \quad (a \in \mathcal{F}\{\eta\}, A \in \mathcal{F}\{y\}).$$

Since $\phi y = \eta$, we have the matrix equation

$$\psi \eta = \phi(\rho_C(y)) = \phi(yC) = \eta C$$

We can see that ψ is bijective by diagram chasing. Therefore ψ extends to a ∂ -automorphism of the field of quotients

$$\sigma \colon \mathfrak{F}\langle \eta \rangle = \mathfrak{G} \to \mathfrak{G}$$

So $\sigma \in G(\mathfrak{G}/\mathfrak{F})$ and since $\sigma \eta = \eta C$,

$$c(\sigma) = C$$
.

We think of \mathfrak{p} as a vector space over \mathfrak{F} and choose a basis \mathcal{A} for it. We also extend \mathcal{A} to a basis \mathcal{B} of $\mathfrak{F}\{y\}$ over \mathfrak{F} , so that $\mathcal{A} \subset \mathcal{B}$.

Lemma 4.3. There exist polynomials

$$Q_{bc} \in \mathcal{F}[X_{11}, \dots, X_{nn}] \qquad b, c \in \mathcal{B}$$

with the property that for every $C \in GL(n)$ and $b \in \mathcal{B}$,

$$\rho_C(b) = \sum_{d \in \mathcal{B}} Q_{bc}(C) d.$$

Proof. We first examine how ρ_C acts on $\mathcal{F}\{y\}$. Let \mathcal{M} be the set of monomials, thus an element M of \mathcal{M} is a power product

$$M = \prod_{k=1}^{r} \left(y_{i_k}^{(e_k)} \right)^{f_k}$$

of the y_i and their derivatives. Since the coordinates of C are constants,

$$\rho_C(y_i^{(e)}) = \sum_k y_k^{(e)} C_{ki}.$$

The right hand side is linear combination of the $y_i^{(e)}$ with coefficients that are coordinates of C. If we apply ρ_C to a monomial we will get product of these right hand sides which is a linear combination of monomials with coefficients that are polynomials over \mathbb{Z} in the coordinates of C. I.e. there exist polynomials

$$P_{MN} \in \mathbb{Z}[X_{11}, \dots, X_{nn}] \qquad M, N \in \mathcal{M}$$

such that

$$\rho_C M = \sum_{N \in \mathcal{M}} P_{MN}(C) N.$$

Because \mathcal{B} and \mathcal{M} are both bases of $\mathcal{F}\{y\}$ over \mathcal{F} , we can express each element of \mathcal{B} as a linear combination over \mathcal{F} of monomials, and, conversely, every monomial as a linear combination over \mathcal{F} of elements of \mathcal{B} . It follows that there exist polynomials

$$Q_{bc} \in \mathcal{F}[X_{11}, \dots, X_{nn}] \qquad b, c \in \mathcal{B}$$

with the property that for every $C \in GL(n)$ and $b \in \mathcal{B}$,

$$\rho_C(b) = \sum_{d \in \mathcal{B}} Q_{bc}(C) d.$$

Lemma 4.4. There is a (possibly infinite) family of polynomials

$$R_i \in \mathfrak{F}[X_{11}, \dots, X_{nn}, Y] \qquad i \in I$$

such that $C \in GL(n)$ is in the image of c if and only if

$$R_i(C, \frac{1}{\det C}) = 0, \qquad i \in I$$

Proof. We know, by Lemma 4.2, that $C \in GL(n)$ is in the image of c if and only if

$$\rho_C \mathfrak{p} \subset \mathfrak{p}$$
 and $\rho_{C^{-1}} \mathfrak{p} \subset \mathfrak{p}$.

Recall that \mathcal{A} is a basis of \mathfrak{p} over \mathfrak{F} and, by the previous lemma,

$$\rho_C(a) = \sum_b Q_{ab}(C) b$$

so $\rho_C \mathfrak{p} \subset \mathfrak{p}$ if and only if

$$Q_{ab}(C) = 0$$
 for every $a \in \mathcal{A}, b \in \mathcal{B}, b \notin \mathcal{A}$.

Similarly $\rho_{C^{-1}}\mathfrak{p} \subset \mathfrak{p}$ if and only if

$$Q_{ab}(C^{-1}) = 0$$
 for every $a \in \mathcal{A}, b \in \mathcal{B}, b \notin \mathcal{A}$.

Of course, the coordinates of C^{-1} are $\frac{1}{\det C}$ times polynomials in the coordinates of C. Thus there exist polynomials

$$R_{ab} \in \mathfrak{F}[X_{11}, \dots, X_{nn}, Y]$$

such that

$$R_{ab}(C, \frac{1}{\det C}) = Q_{ab}(C^{-1})$$

To conclude the proof of the theorem we need to find polynomials as above, except that the coefficients should be in \mathcal{C} not \mathcal{F} .

Choose a basis Λ of \mathcal{F} over \mathcal{C} . We then can write

$$R_i = \sum_{\lambda \in \Lambda} S_{i\lambda} \,\lambda$$

where

$$S_{i\lambda} \in \mathfrak{C}[X_{11}, \dots, X_{nn}, Y]$$
.

If $R_i(C, \frac{1}{\det C}) = 0$ then

$$0 = \sum_{\lambda \in \Lambda} S_{i\lambda}(C, \frac{1}{\det C}) \,\lambda$$

Because the elements of Λ are linearly independent over \mathcal{C} , we must have

$$S_{i\lambda}(C, \frac{1}{\det C}) = 0$$
 for all $\lambda \in \Lambda$

It follows from the previous lemma that $C \in \mathrm{GL}(n)$ is in the image of c if and only if

$$S_{i\lambda}(C, \frac{1}{\det C}) = 0$$
 for all $i \in I$ and $\lambda \in \Lambda$

This proves the theorem.

5 Matrix equations

Starting with a linear homogeneous ∂ -equation (a scalar ∂ -equation) we chose a fundamental system of solutions η_1, \ldots, η_n and formed the Wronskian

$$\begin{pmatrix} \eta_1 & \cdots & \eta_n \\ \vdots & & \vdots \\ \eta_1^{(n-1)} & \cdots & \eta_n^{(n-1)} \end{pmatrix}$$

We discovered that

$$W' = AW$$

where

$$A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & 0 & 1 & & \vdots \\ \vdots & 0 & \ddots & & \vdots \\ \vdots & & \ddots & 1 & 0 \\ 0 & \dots & \ddots & 0 & 1 \\ -a_0 - a_1 \dots & -a_{n-2} - a_{n-1} \end{pmatrix}$$

was a matrix with coefficients in \mathcal{F} .

We can also start with a matrix equation

$$Y' = AY$$

where $A \in \operatorname{Mat}_{\mathcal{F}}(n)$ is any matrix with coordinates in \mathcal{F} , and look for a solution matrix Z that is invertible. The matrix Z is called a fundamental solution matrix for the matrix ∂ -equation.

6 The Picard-Vessiot ring

Let $A \in \operatorname{Mat}_{\mathcal{F}}(n)$ be a given $n \times n$ matrix with coefficients in \mathcal{F} .

Definition 6.1. By a *Picard-Vessiot ring for A* we mean an integral domain \Re such that

- 1. $(\operatorname{qf} \mathfrak{R})^{\partial} = \mathfrak{F}^{\partial} = \mathfrak{C},$
- 2. $\mathcal{R} = \mathcal{F}[Z, Z^{-1}]$ where $Z'Z^{-1} = A \in \text{Mat}_{\mathcal{F}}(n)$.

Item 2 could also be written $\mathcal{R} = \mathcal{F}[Z, \frac{1}{\det Z}]$. There is a popular "abuse of notation" that writes $\mathcal{R} = \mathcal{F}[Z, \frac{1}{\det}]$.

Proposition 6.2. If $\mathfrak{G} = \mathfrak{F}(\eta) = \mathfrak{F}(W)$ is a Picard-Vessiot extension, as before, then $\mathfrak{R} = \mathfrak{F}[W, W^{-1}]$ is a Picard-Vessiot ring.

Conversly, if \Re is a Picard-Vessiot ring then $\Im = \operatorname{qf} \Re$ is a Picard-Vessiot extension.

If \mathcal{F} contains a non-constant this is a consequence of the "cyclic vector theorem". If $\mathcal{F} = \mathcal{C}$ it must (and can be) proven by a different method.

Definition 6.3. By the *Galois group* of \mathcal{R} over \mathcal{F} , denoted $G(\mathcal{R}/\mathcal{F})$ we mean the group of a ∂ -automorphisms of \mathcal{R} over \mathcal{F} .

Proposition 6.4. If $\mathcal{G} = \operatorname{qf} \mathcal{R}$, then $G(\mathcal{R}/\mathcal{F}) = G(\mathcal{G}/\mathcal{F})$.

7 Differential simple rings

Definition 7.1. Let \mathcal{R} be a ∂ -ring. We say that \mathcal{R} is ∂ -simple if \mathcal{R} has no proper non-trivial ∂ -ideal.

In algebra (not ∂ -algebra) a simple (commutative) ring R is uninteresting. Indeed (0) is a maximal ideal and the quotient

$$R/(0) = R$$

is a field, i.e. R is a field. But in ∂ -algebra the concept is very important.

Example 7.2. Let $\mathcal{R} = \mathbb{C}[x]$ where x' = 1 is ∂ -simple. If $\mathfrak{a} \subset \mathcal{R}$ is a non-zero ∂ -ideal then it contains a non-zero polynomial. Choose a non-zero polynomial P(x) in \mathfrak{a} having smallest degree. But $P' \in \mathfrak{a}$ has smaller degree, so P' = 0. But that makes $P \in \mathbb{C}$ so $1 \in \mathfrak{a}$.

Note that (0) is a maximal ∂ -ideal (there is no proper ∂ -ideal containing it) but is not a maximal ideal.

More generally, if \mathcal{R} is any ∂ -ring and \mathfrak{m} a maximal ∂ -ideal of \mathcal{R} then \mathcal{R}/\mathfrak{m} is ∂ -simple. It is a field if and only if \mathfrak{m} is a maximal ideal.

Proposition 7.3. Let \mathcal{R} be a Picard-Vessiot ring. Then \mathcal{R} is ∂ -simple.

Proposition 7.4. Suppose that \Re is a ∂ -simple ring containing \Re . Then

1. R is an integral domain, and

2.
$$(\operatorname{qf} \mathfrak{R})^{\partial} = \mathfrak{C}$$
.

This suggests a way of creating Picard-Vessiot rings.

Theorem 7.5. Let $A \in \operatorname{Mat}_{\mathfrak{F}}(n)$. Then there exists a Picard-Vessiot ring \mathfrak{R} for A.

Proof. Let $y = (y_{ij})$ be a family of n^2 ∂ -indeterminates over \mathcal{F} and let

$$S = \mathcal{F}\{y\}[\frac{1}{\det y}]$$

(The derivation on $\mathcal{F}\{y\}$ extends to S by the quotient rule.) We want to find a maximal ∂ -ideal of S that contains the ∂ -ideal

$$\mathfrak{a} = [y' - Ay]$$

We can do this, using Zorn's Lemma, as long as \mathfrak{a} is proper, i.e. no power of det y is in \mathfrak{a} . But this is certainly true since every element of \mathfrak{a} has order at least 1 and det y has order 0.

Let \mathfrak{m} be a maximal ∂ -ideal of S that contains \mathfrak{a} and set

$$\Re = \$/\mathfrak{m}$$

 \mathcal{R} is ∂ -simple so it is a domain and $(\operatorname{qf} \mathcal{R})^{\partial} = \mathcal{C}$. If Z is the image of the matrix y in \mathcal{R} then

$$Z' = AZ$$

since \mathfrak{a} is contained the kernel of $S \to \mathcal{R}$.

Corollary 7.6. Given a linear homogeneous ∂ -equation L(y) = 0 there exists a Picard-Vessiot extension for L.

8 Example where [y'-A] is not maximal

The example I gave at the seminar was wrong. I had forgotten that the containing ring is $\mathcal{F}\{\{[\frac{1}{\det y}]\}$.

Let $\mathfrak{F} = \mathbb{C}(e^x)$ and A = 1 (a 1×1 matrix). The we must look at the ideal

$$[y'-y] \subset \mathcal{F}\{y\}[\frac{1}{y}] = \mathcal{F}\{y, \frac{1}{y}\}$$

I had asserted that $[y'-y] \subset [y]$, which is indeed true, but not relevant, since $1 \in [y]$. However

$$[y'-y] \subset [y-e^x]$$
.

Indeed

$$y' - y = (y - e^x)' - (y - e^x)$$

Also $[y-e^x]$ is a maximal ∂ -ideal (even a maximal ideal) since it is the kernel of the substitution homomorphism

$$\mathfrak{F}{y,\frac{1}{y}} \to \mathfrak{F}{e^x,e^{-x}} = \mathbb{C}(e^x) = \mathfrak{F}$$

9 Tensor products

Let \mathcal{R} and \mathcal{S} be ∂ -rings that both contain \mathcal{F} . We are interested in the tensor product

$$\mathcal{R} \otimes_{\mathfrak{T}} \mathcal{S}$$

This is a ∂ -ring. The easiest way to describe it uses vector space bases.

Let $\{x_i\}$, $(i \in I)$, be a vector space basis of \mathcal{R} over \mathcal{F} and $\{y_j\}$, $(j \in J)$, be a basis of \mathcal{S} over \mathcal{F} . Consider the set of all pairs (x_i, y_j) and the set $\mathcal{R} \otimes_{\mathcal{F}} \mathcal{S}$ of all formal finite sums

$$\sum_{i,j} a_{ij}(x_i, y_j) \quad \text{where } a_{ij} \in \mathcal{F}$$

 $\mathcal{R} \otimes_{\mathcal{F}} \mathcal{S}$ is a vector space over \mathcal{F} with basis (x_i, y_i) .

If $x = \sum_i a_i x_i \in \mathcal{R}$ and $y = \sum_j b_j y_j \in \mathcal{S}$ we write

$$x \otimes y = \sum_{i} \sum_{j} a_{i} b_{j}(x_{i}, y_{j}) \in \mathcal{R} \otimes_{\mathcal{F}} \mathcal{S}$$

We have

1.
$$(x + \overline{x}) \otimes y = x \otimes y + \overline{x} \otimes y$$

2.
$$x \otimes (y + \overline{y}) = x \otimes y + x \otimes \overline{y}$$

3.
$$a(x \otimes y) = ax \otimes y = x \otimes ay$$

One defines multiplication so that

$$(x \otimes y)(\overline{x} \otimes \overline{y}) = x\overline{x} \otimes y\overline{y}$$

and shows that $\mathcal{R} \otimes_{\mathcal{F}} S$ is a ring. Finally we define a derivation with the property

$$(x \otimes y)' = x' \otimes y + x \otimes y'$$

and we get a ∂ -ring.

We have two "canonical" mappings

$$\alpha : \mathcal{R} \longrightarrow \mathcal{R} \otimes_{\mathcal{F}} \mathcal{S}$$

$$a \longmapsto a \otimes 1$$

and

$$\beta \colon \mathbb{S} \longrightarrow \mathbb{R} \otimes_{\mathcal{F}} \mathbb{S}$$

$$a \longmapsto 1 \otimes a$$

10 $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$

Be careful. Tensor products are usually much worse than the rings you started with. For example

$$\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$$

is not a field, in fact it is not even an integral domain! Indeed

$$(i \otimes 1 + 1 \otimes i)(i \otimes 1 - 1 \otimes i) = -1 \otimes 1 - i \otimes i + i \otimes i - 1 \otimes -1 = 0$$

In fact $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \approx \mathbb{C} \times \mathbb{C}$. Every element of $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ has the form

$$x = a(1 \otimes 1) + b(i \otimes 1) + c(1 \otimes i) + d(i \otimes i)$$

We define $\phi \colon \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \to \mathbb{C}^2$ by

$$\phi(x) = ((a+d) + (b-c)i, (a-d) + (b+c)i)$$

It is straightforward to check that ϕ is an isomorphism or rings.

11 Uniqueness of a Picard-Vessiot ring

Suppose that \mathcal{R} and \mathcal{S} are both Picard-Vessiot rings for the matrix A. Say

$$\mathfrak{R}=\mathfrak{F}[Z,Z^{-1}] \qquad \mathfrak{S}=\mathfrak{F}[W,W^{-1}]$$

where

$$Z'Z^{-1} = A = W'W^{-1}$$

If Z and W were in some common ring extension \mathcal{T} of both \mathcal{R} and \mathcal{S} , then

$$W = ZC$$

for some matrix of constants, $C \in \mathfrak{T}^{\partial}$. We can easily find a common ring extension of both \mathcal{R} and \mathcal{S} , namely

$$\mathfrak{R} \otimes_{\mathfrak{F}} \mathtt{S}$$

And we can find one whose ring of constants is C

$$\mathfrak{T} = (\mathfrak{R} \otimes_{\mathfrak{T}} \mathfrak{S})/\mathfrak{m}$$

where \mathfrak{m} is a maximal ∂ -ideal of $\mathcal{R} \otimes_{\mathfrak{F}} \mathfrak{S}$. (It is ∂ -simple!)

Proposition 11.1. Suppose that \mathfrak{m} is a maximal ∂ -ideal of $\mathfrak{R} \otimes_{\mathfrak{F}} \mathfrak{S}$ and let

$$\pi: \mathcal{R} \otimes_{\mathcal{F}} \mathcal{S} \to (\mathcal{R} \otimes_{\mathcal{F}} \mathcal{S})/\mathfrak{m} = \mathfrak{T}$$

be the canonical homomorphism. Then

$$\phi \colon \mathfrak{R} \xrightarrow{\alpha} \mathfrak{R} \otimes_{\mathfrak{F}} \mathfrak{S} \xrightarrow{\pi} \mathfrak{T}$$

and

$$\psi \colon \mathbb{S} \xrightarrow{\beta} \mathbb{R} \otimes_{\mathfrak{T}} \mathbb{S} \xrightarrow{\pi} \mathfrak{T}$$

are isomophisms.

Proof. The kernel of ϕ is a proper ∂ -ideal of \mathcal{R} . Because \mathcal{R} is ∂ -simple, this ideal must be (0), so ϕ is injective.

Since Z' = AZ and W' = AW and A has coefficients in \mathcal{F} ,

$$C = \pi(1 \otimes W)\pi(Z \otimes 1)^{-1}$$

is a matrix of constants and hence has coordinates in C. Therefore

$$\pi(1 \otimes W) = C\pi(Z \otimes 1) = \pi(CZ \otimes 1)$$

and

$$\pi(1\otimes S)\subset \pi(\Re\otimes 1)$$

or

$$\mathfrak{T} = \pi(\mathfrak{R} \otimes \mathfrak{S}) \subset \pi(\mathfrak{R} \otimes 1) = \pi(\alpha(\mathfrak{R})).$$

The following proposition says that a Picard-Vessiot ring for A is unique up to ∂ -isomorphism. It follows that a Picard-Vessiot extension for a linear homogeneous ∂ -equation is also unique up to a ∂ -isomorphism.

Theorem 11.2. \mathcal{R} and \mathcal{S} are ∂ -isomorphic.

Proof. Both \mathcal{R} and \mathcal{S} are ∂ -isomorphic to \mathcal{T} .

12 $\mathcal{R} \otimes_{\mathcal{F}} \mathcal{R}$

We continue to assume that \mathcal{R} is a Picard-Vessiot ring. Here we are interested in the ∂ -ring

$$\mathcal{R} \otimes_{\mathfrak{F}} \mathcal{R}$$

and in particular relating it to the Galois group $G(\mathcal{R}/\mathcal{F})$.

Let $\sigma \in G(\mathcal{R}/\mathcal{F})$. Define a mapping

$$\bar{\sigma} \colon \mathcal{R} \otimes_{\mathcal{F}} \mathcal{R} \to \mathcal{R}$$

by

$$\bar{\sigma}(a\otimes b)=a\sigma b.$$

Proposition 12.1. If $\sigma \in G(\mathcal{R}/\mathcal{F})$ then the kernel of $\bar{\sigma}$ is a maximal ∂ -ideal \mathfrak{m}_{σ} .

Proof.

$$(\mathcal{R} \otimes_{\mathcal{F}} \mathcal{R})/\mathfrak{m}_{\sigma} \approx \mathcal{R}$$

Because \mathcal{R} is ∂ -simple, \mathfrak{m}_{σ} is a maximal ∂ -ideal.

Proposition 12.2. Let $\sigma \in G(\mathcal{R}/\mathcal{F})$. Then \mathfrak{m}_{σ} is generated as an ideal by

$$\sigma a \otimes 1 - 1 \otimes a \qquad a \in \mathcal{R}$$
.

Proof. If $a \in \mathbb{R}$ then

$$\bar{\sigma}(\sigma a \otimes 1 - 1 \otimes a) = \sigma a - \sigma a = 0$$

so $\sigma a \otimes 1 - 1 \otimes a \in \mathfrak{m}_{\sigma}$.

Now suppose that

$$x = \sum_{i} a_i \otimes b_i \in \mathfrak{m}_{\sigma}$$
 so that $\sum_{i} a_i \sigma b_i = 0$

Then

$$x = \sum_{i} (a_i \otimes 1)(1 \otimes b_i - \sigma b_i \otimes 1) + \sum_{i} a_i \sigma b_i \otimes 1$$
$$= -\sum_{i} (a_i \otimes 1)(\sigma b_i \otimes 1 - 1 \otimes b_i)$$

With this we can prove the converse of Proposition 12.1.

Theorem 12.3. Let \mathfrak{m} be a maximal ∂ -ideal of $\mathfrak{R} \otimes_{\mathfrak{F}} \mathfrak{R}$. Then there exists $\sigma \in G(\mathfrak{G}/\mathfrak{F})$ such that $\mathfrak{m} = \mathfrak{m}_{\sigma}$.

Proof. Set

$$\mathfrak{T}=(\mathfrak{R}\otimes_{\mathfrak{F}}\mathfrak{R})/\mathfrak{m}, \qquad \pi\colon \mathfrak{R}\otimes_{\mathfrak{F}}\mathfrak{R}\to \mathfrak{T}$$

By Proposition 11.1 the mappings

$$\pi \circ \alpha \colon \mathcal{R} \to \mathcal{T}$$
 and $\pi \circ \beta \colon \mathcal{R} \to \mathcal{T}$

are isomorphisms.

Define

$$\sigma \colon \mathcal{R} \to \mathcal{R}$$
 by $\sigma = (\pi \circ \alpha)^{-1} \circ (\pi \circ \beta)$

i.e., so that

commutes.

Let $a \in \mathcal{R}$, then But

$$\pi(\sigma a \otimes 1 - 1 \otimes a) = \pi(\alpha(\sigma a)) - \pi(\beta a) = (\pi \circ \alpha \circ \sigma)(a) - (\pi \circ \beta)(a) = 0$$

Therefore

$$\sigma a \otimes 1 - 1 \otimes a \in \ker \pi = \mathfrak{m}$$

By Proposition 12.2

$$\mathfrak{m}_{\sigma}\subset\mathfrak{m}$$

But \mathfrak{m}_{σ} is a maximal ∂ -ideal, therefore

$$\mathfrak{m}_{\sigma}=\mathfrak{m}$$
 .

We have shown that $G(\mathcal{R}/\mathcal{F})$ is in bijective correspondence (i.e. can be identified with the set of maximal ∂ -ideals of $\mathcal{R} \otimes_{\mathcal{F}} \mathcal{R}$, i.e.

$$G(\mathcal{R}/\mathcal{F}) \approx \max \text{ diffspec}(\mathcal{R} \otimes_{\mathcal{F}} \mathcal{R})$$
.

We have diffspec but we want spec.

13 $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ bis

 \mathbb{C} is a Galois extension of \mathbb{R} with Galois group $\{id, \gamma\}$, γ being complex conjugation. It turns out that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ has precisely two prime ideals and they are both maximal. The first is generated by

$$a \otimes 1 - 1 \otimes a$$
 $a \in \mathbb{C}$

which corresponds the the identity automorphism, and the other generated by

$$\gamma a \otimes 1 - 1 \otimes a \qquad a \in \mathbb{C}$$

which corresponds to the automorphism γ . Thus

$$\max\operatorname{spec}(\mathbb{C}\otimes_{\mathbb{R}}\mathbb{C})=\operatorname{spec}(\mathbb{C}\otimes_{\mathbb{R}}\mathbb{C})$$

is a finite scheme, which is in fact a group scheme and is isomorphic to the Galois group.

14 The constants of $\mathcal{R} \otimes_{\mathcal{F}} \mathcal{R}$

Definition 14.1. Let

$$\mathfrak{K} = (\mathfrak{R} \otimes_{\mathfrak{F}} \mathfrak{R})^{\partial}$$

Remember that $\mathcal{R}^{\partial} = \mathcal{C}$, so we might expect \mathcal{K} to be rather small (maybe $\mathcal{K} = \mathcal{C}$). This is very far from the truth.

Example 14.2. Let $\mathcal{F} = \mathbb{C}(x)$ and let

$$Z = (e^x) \in GL(1)$$

Note that

$$Z' = Z$$
, so $A = 1$.

The Picard-Vessiot ring is

$$\mathcal{R} = \mathcal{F}[e^x, e^{-x}].$$

Then

$$(e^x \otimes e^{-x})' = e^x \otimes e^{-x} + e^x \otimes (-e^{-x}) = 0$$

SO

$$c = e^x \otimes e^{-x} \in \mathcal{K}$$

Example 14.3. Now let

$$Z = \begin{pmatrix} 1 & \log x \\ 0 & 1 \end{pmatrix}$$

Here

$$Z' = \begin{pmatrix} 0 & \frac{1}{x} \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & \frac{1}{x} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & \log x \\ 0 & 1 \end{pmatrix}$$
$$= AZ$$

and

$$\mathcal{R} = \mathcal{F}[\log x]$$

Let

$$c = \log x \otimes 1 - 1 \otimes \log x$$

then

$$c' = \frac{1}{x} \otimes 1 - 1 \otimes \frac{1}{x} = 0$$

so $\gamma \in \mathcal{K}$.

If $M, N \in \operatorname{Mat}_{\mathcal{R}}(n)$ we define

$$M \otimes N \in \operatorname{Mat}_{\mathcal{R} \otimes_{\mathcal{F}} \mathcal{R}}(n)$$

be the matrix whose ij^{th} coordinate is

$$(M\otimes N)_{ij}=\sum_{k}M_{ik}\otimes N_{kj}$$

Proposition 14.4. Suppose that $\Re = \Re[Z, Z^{-1}]$. Then

$$\gamma = Z \otimes Z^{-1}$$

is a matrix of constants.

Theorem 14.5.

$$\mathcal{K}=\mathfrak{C}[\gamma,\gamma^{-1}]$$

15 Ideals in $\mathcal{R} \otimes_{\mathcal{C}} \mathcal{K}$

Definition 15.1. Let

$$I(\mathfrak{K})$$

denote the set of ideals of \mathcal{K} and

$$\mathfrak{I}(\mathfrak{R} \otimes_{\mathfrak{C}} \mathfrak{K})$$

the set of ∂ -ideals of $\mathcal{R} \otimes_{\mathfrak{C}} \mathcal{K}$.

Suppose that \mathfrak{a}_o is an ideal of \mathcal{K} , then

$$\mathcal{R} \otimes_{\mathfrak{C}} \mathfrak{a}_o$$

is a ∂ -ideal of $\mathcal{R} \otimes_{\mathcal{C}} \mathcal{K}$. This gives a mapping

$$\Phi: I(\mathfrak{K}) \longrightarrow \mathfrak{I}(\mathfrak{R} \otimes_{\mathfrak{C}} \mathfrak{K})$$

If $\mathfrak{a} \in \mathcal{R} \otimes_{\mathfrak{C}} \mathcal{K}$ is a ∂ -ideal then

$$\{c \in \mathcal{K} \mid 1 \otimes c \in \mathfrak{a}\}\$$

is an ideal of \mathcal{K} and we have a mapping

$$\Psi \colon \mathfrak{I}(\mathfrak{R} \otimes_{\mathfrak{C}} \mathfrak{K}) \longrightarrow I(\mathfrak{K})$$

Theorem 15.2. The mappings Φ and Ψ are bijective and inverse to each other.

The mappings Φ and Ψ are order-preserving, so we get a bijection between maximal ideals of \mathcal{K} and maximal ∂ -ideals of $\mathcal{R} \otimes_{\mathfrak{C}} \mathcal{K}$.

16
$$\mathcal{R} \otimes_{\mathcal{F}} \mathcal{R} \approx \mathcal{R} \otimes_{\mathcal{C}} \mathcal{K}$$

This is one of the most important theorems of Picard-Vessiot rings.

Recall that

$$\mathfrak{K} = (\mathfrak{R} \otimes_{\mathfrak{F}} \mathfrak{R})^{\partial}$$

so, in particular, $\mathcal{K} \subset \mathcal{R} \otimes_{\mathcal{F}} \mathcal{R}$. We have a homomorphism

$$\phi \colon \mathcal{R} \otimes_{\mathfrak{C}} \mathcal{K} \longrightarrow \mathcal{R} \otimes_{\mathfrak{F}} \mathcal{R}$$

given by

$$r \otimes k \longmapsto (r \otimes 1) k$$

Theorem 16.1. $\mathcal{R} \otimes_{\mathcal{F}} \mathcal{R} \approx \mathcal{R} \otimes_{\mathcal{C}} \mathcal{K}$

Proof. We consider

$$\phi \colon \mathcal{R} \otimes_{\mathcal{C}} \mathcal{K} \longrightarrow \mathcal{R} \otimes_{\mathcal{F}} \mathcal{R}$$

The kernel is a ∂ -ideal of $\mathcal{R} \otimes_{\mathfrak{C}} \mathcal{K}$. By Theorem 15.2, there is an ideal $\mathfrak{a}_o \subset \mathcal{K}$ with

$$\Re \otimes \mathfrak{a}_o = \ker \phi$$

But ϕ restricted to $1 \otimes \mathcal{K}$ is injective, so $\mathfrak{a}_o = 0$. Therefore ϕ is injective.

For surjectivity we need to show that $1 \otimes \mathcal{R} \subset \mathcal{R} \otimes 1$ [\mathcal{K}]. But

$$1 \otimes Z = (Z \otimes 1)(Z^{-1} \otimes Z) = (Z \otimes 1)\gamma \in (\Re \otimes 1)[\Re]$$

17 spec \mathcal{K}

Theorem 17.1. If \Re is a Picard-Vessiot ring and

$$\mathfrak{K} = (\mathfrak{R} \otimes_{\mathfrak{F}} \mathfrak{R})^{\partial}$$

then

$$G(\mathcal{R}/\mathcal{F}) \approx \max \operatorname{diffspec}(\mathcal{R} \otimes_{\mathcal{F}} \mathcal{R})$$

 $\approx \max \operatorname{diffspec}(\mathcal{R} \otimes_{\mathcal{C}} \mathcal{K})$
 $\approx \max \operatorname{spec} \mathcal{K}$

Proof. The first line is Theorem 12.3, the second line is Theorem 16.1 and the last is Theorem 15.2. \Box

18 Zariski topology on spec \mathcal{K}

 $X = \operatorname{spec} \mathcal{K}$ is the set of prime ideals of \mathcal{K} . If $\mathfrak{a} \subset \mathcal{K}$ is a radical ideal, then we define

$$V(\mathfrak{a}) = \{ \mathfrak{p} \in K \mid \mathfrak{a} \subset \mathfrak{p} \}$$

Note that V is order-reversing:

$$\mathfrak{a} \subset \mathfrak{b} \Longrightarrow V(\mathfrak{a}) \supset V(\mathfrak{b})$$

Also

$$V((1)) = \emptyset$$

$$V((0)) = X$$

$$V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$$

$$V(\bigcup_{i} \mathfrak{a}_{i}) = \bigcap_{i} V(\mathfrak{a}_{i})$$

We put a topology on X, called the *Zariski topology*, by defining the closed sets to be sets of the form $V(\mathfrak{a})$ for some radical ideal \mathfrak{a} of \mathfrak{K} .

By a closed point \mathfrak{p} of X we mean a point (prime ideal) such that

$$V(\mathfrak{p}) = {\mathfrak{p}}.$$

Thus the closed points are precisely the maximal ideals, i.e. the set of closed points is what I previously called max spec K.

We can do the same thing for ∂ -rings \mathcal{R} . Thus diffspec \mathcal{R} is the set of prime ∂ -ideals, if \mathfrak{a} is a radical ∂ -ideal of \mathcal{R} then $V(\mathfrak{a})$ is defined similarly. And we get a topology, called the *Kolchin topology*. The set of closed points is max diffspec \mathcal{R} .

Beware Despite the similarity of definitions of diffspec \mathcal{R} and spec \mathcal{K} , there are vast differences in the theory.

I want to describe $\max \operatorname{spec} \mathcal{K}$ a little further. We know that

$$\mathcal{K} = \mathfrak{C}[\gamma, \frac{1}{\det \gamma}]$$

where $\gamma = Z^{-1} \otimes Z \in \operatorname{Mat}_{\mathcal{K}}(n)$. Let $X = (X_{ij})$ be indeterminates over \mathfrak{C} and Y another indeterminate. Then

$$\pi \colon C[X,Y] \longrightarrow \mathcal{K}$$

$$X \longmapsto \gamma$$

$$Y \longmapsto \frac{1}{\det \gamma}$$

We have an exact sequence

$$0 \longrightarrow \mathfrak{a} \longrightarrow \mathfrak{C}[X,Y] \stackrel{\pi}{\longrightarrow} \mathfrak{K} \longrightarrow 0$$

where \mathfrak{a} is the kernel of π .

An element of $\max \operatorname{spec} \mathcal{K}$ comes from a maximal ideal of $\mathcal{C}[X,Y]$ that contains \mathfrak{a} and conversely, i.e.

 $\max \operatorname{spec} \mathcal{K} \approx \{\mathfrak{m} \subset \mathfrak{C}[X,Y] \mid \mathfrak{m} \text{ is a maximal ideal that contains } \mathfrak{a}\}$

If $c \in GL(n)$ is a zero of \mathfrak{a} then

$$\mathfrak{m} = (X - c, (\det c)Y - 1)$$

is a maximal ideal containing \mathfrak{a} . The converse is also true - this is the weak Hilbert Nullstellensatz. Therefore the set of maximal ideals containing \mathfrak{a} , max spec \mathcal{K} , is the zero set of \mathfrak{a} .

19 Affine scheme and morphisms

Theorem 19.1. Let R and S be C-algebras. An algebra homomorphism

$$\phi \colon R \to S$$

induces a scheme morphism

$$^a\phi$$
: spec $S \to \operatorname{spec} R$

Conversely, a scheme morphism

$$f : \operatorname{spec} S \to \operatorname{spec} R$$

induces an algebra homomorphism

$$f^{\#} \colon R \to S$$

There is a bijection

$$Mor(\operatorname{spec} S, \operatorname{spec} R) \approx Hom(R, S)$$

Note that the arrows get reversed.

Theorem 19.2. Let R and S be C-algebras. Then

$$\operatorname{spec} R \times \operatorname{spec} S = \operatorname{spec}(R \otimes_{\mathfrak{C}} S)$$

20 Group scheme

A group in the category of sets is well-known. But a group in the category of schemes is somewhat different. It is NOT a group in the category of sets. In category theory one deals with objects and arrows. Here too. We write $G = \operatorname{spec} \mathcal{K}$ and $C = \operatorname{spec} \mathfrak{C}$. All products are over C, i.e. $\times = \times_C$.

Definition 20.1. $G = \operatorname{spec} \mathcal{K}$ is a *group scheme* if there are mappings

$$m: G \times G \to G,$$
 (multiplication)
 $e: C \to G,$ (identity)
 $i: G \to G,$ (inverse)

such that the following diagrams commute.

$$G \times G \times G \xrightarrow{m \times \mathrm{id}_G} G \times G$$

$$\downarrow_{\mathrm{id}_G \times m} \qquad \qquad \downarrow_m$$

$$G \times G \xrightarrow{m} G$$
(associativity)

21 Hopf algebra

We can translate the group scheme mappings into algebra homomorphisms.

Definition 21.1. \mathcal{K} is a *Hopf algebra* if there are mappings

$$\begin{array}{ll} \Delta \colon \mathcal{K} \to \mathcal{K} \otimes \mathcal{K}, & \text{(comultiplication)} \\ I \colon \mathcal{K} \to \mathcal{C}, & \text{(coidentity)} \\ S \colon \mathcal{K} \to \mathcal{K}, & \text{(coinverse or antipode)} \end{array}$$

such that the following diagrams commute.

Theorem 21.2. K is a Hopf algebra if and only if spec K is a group scheme.

22 Sweedler coring

There is a natural structure of coring (which I will not define) on $\mathcal{R} \otimes_{\mathcal{F}} \mathcal{R}$ defined by

$$\Delta \colon \mathcal{R} \otimes_{\mathcal{F}} \mathcal{R} \longrightarrow (\mathcal{R} \otimes_{\mathcal{F}} \mathcal{R}) \otimes_{\mathcal{R}} (\mathcal{R} \otimes_{\mathcal{F}} \mathcal{R})$$
$$a \otimes b \longmapsto a \otimes 1 \otimes 1 \otimes b$$

$$I \colon \mathcal{R} \otimes_{\mathcal{F}} \mathcal{R} \longrightarrow \mathcal{F}$$
$$a \otimes b \longmapsto ab$$

$$S \colon \mathcal{R} \otimes_{\mathcal{F}} \mathcal{R} \longrightarrow \mathcal{R} \otimes_{\mathcal{F}} \mathcal{R}$$
$$a \otimes b \longmapsto b \otimes a$$

This looks like a Hopf algebra but, in fact, is not quite.

Proposition 22.1. The mappings above restrict to

$$\Delta^{\partial} \colon \mathcal{K} \longrightarrow \mathcal{K} \otimes_{\mathcal{C}} \mathcal{K}$$
$$I^{\partial} \colon \mathcal{K} \longrightarrow \mathcal{C}$$
$$S^{\partial} \colon \mathcal{K} \longrightarrow \mathcal{K}$$

Theorem 22.2. \mathcal{K} together with Δ^{∂} , I^{∂} and S^{∂} is a Hopf algebra.

Theorem 22.3. spec \mathcal{K} is a group scheme.

23 Matrices return

We can compute the comultiplication Δ on \mathcal{K} . Recall that

$$\mathfrak{K}=\mathfrak{C}[\gamma,\frac{1}{\det\gamma}], \qquad \gamma=Z^{-1}\otimes Z\,.$$

SO

$$\Delta(\gamma) = Z^{-1} \otimes_{\mathcal{F}} 1 \otimes_{\mathcal{R}} 1 \otimes_{\mathcal{F}} Z = Z^{-1} \otimes_{\mathcal{F}} Z \otimes_{\mathcal{R}} Z^{-1} \otimes_{\mathcal{F}} Z \gamma \otimes_{\mathcal{R}} \gamma$$

because Z has coordinates in \Re . Thus

$$\Delta^{\partial}(\gamma) = \gamma \otimes_{\mathfrak{C}} \gamma$$

i.e.

$$\Delta^{\partial}(\gamma_{ij}) = \sum_{k} \gamma_{ik} \otimes_{\mathfrak{C}} \gamma_{kj}$$

which is matrix multiplication.

Also

$$I(\gamma) = I(Z^{-1} \otimes Z) = Z^{-1}Z = 1 \in \operatorname{GL}_{\mathfrak{R}}(n)$$

so

$$I^{\partial}(\gamma) = 1 \in \mathrm{GL}_{\mathfrak{C}}(n)$$

Finally

$$S(\gamma) = S(Z^{-1} \otimes_{\mathfrak{F}} Z) = Z \otimes_{\mathfrak{F}} Z^{-1} = (Z^{-1} \otimes Z)^{-1} = \gamma^{-1}$$

24 The Weierstraß ℘-function

Up to now we have dealt only with Picard-Vessiot extensions. The Galois group is a subgroup of GL(n), in particular, it is affine. There is a more general theory, the theory of strongly normal extensions. Here we examine one simple example. We use classical language of algebraic geometry.

Start with projective 2-space $\mathbb{P}^2 = \mathbb{P}^2(\mathbb{C})$. This is the set of equivalence class of triples

$$(a,b,c) \in \mathfrak{C}^3$$
 $(a,b,c) \neq 0$,

modulo the equivalence relation

$$(a, b, c) \sim (\lambda a, \lambda b, \lambda c)$$
 $\lambda \in \mathcal{C}, \lambda \neq 0$.

The equivalence class of (a, b, c) is denoted [a, b, c].

Recall that a polynomial $P \in \mathcal{C}[X,Y,Z]$ is homogeneous if every term has the same degree. A subset $S \subset \mathbb{P}^2$ is closed (in the Zariski topology) if it is the set of all zeros of a finite set of homogeneous polynomials

$$f_1, \ldots, f_r \in \mathfrak{C}[X, Y, Z]$$

We define $E \subset \mathbb{P}^2$ to be the *elliptic curve*, the zero set of the single homogeneous polynomial

$$Y^2Z - 4X^3 + g_2XZ^2 + g_3Z^3$$

where $g_2, g_3 \in \mathcal{C}$ and the discriminant $g_2^3 - 27g_3^2$ is not 0.

If $[a, b, c] \in E$ and $c \neq 0$ then

$$[a,b,c] = \left[\frac{a}{c}, \frac{b}{c}, 1\right] = [x,y,1], \qquad y^2 = 4x^3 - g_2x - g_3.$$

If c = 0 then it follows that a = 0. We get the single point [0, 1, 0] which we denote by ∞ .

We can interpret the equation $y^2 = 4x^3 - g_2x - g_3$ as defining a Riemann surface. It has genus 1. We can integrate on this surface and the integral is defined up to homotopy (which we call "periods").

Theorem 24.1. (Abel) Given $P_1, P_2 \in E$ there is a unique $P_3 \in E$ such that

$$\int_{\infty}^{P_1} \frac{dt}{s} + \int_{\infty}^{P_2} \frac{dt}{s} = \int_{\infty}^{P_3} \frac{dt}{s} \qquad (mod \ periods)$$

Here t is a dummy variable and $s^2 = 4t^3 - g_2t - g_3$.

This puts an addition on E and makes it an algebraic group.

It turns out that

$$-[x,y,1]=[x,-y,1]$$

Suppose that $[x_1, y_1, 1]$ and $[x_2, y_2, 1]$ are in E and $x_1 \neq x_2$. Then

$$[x_1, y_1, 1] + [x_2, y_2, 1] = [-(x_1 + x_2) + \frac{1}{4} \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2, -\left(\frac{y_2 - y_1}{x_2 - x_1}\right) x_3 - \frac{y_1 x_2 - y_2 x_1}{x_2 - x_1}, 1]$$

Weierstraß inverted the integral to define $\wp(x)$:

$$x = \int_{-\infty}^{\wp(x)} \frac{dt}{s} \, .$$

so that

$$\wp'^2 = 4\wp^3 - g_2\wp - g_3.$$

In general, we simply define \wp to be a solution of this ∂ -equation.

Definition 24.2. A ∂ -field extension \mathcal{G} of \mathcal{F} is said to be Weierstrassian if

1.
$$\mathfrak{G}^{\partial} = \mathfrak{F}^{\partial} = \mathfrak{C}$$
,

2.
$$\mathcal{G} = \mathcal{F}\langle \wp \rangle$$
 where $\wp'^2 = 4\wp^3 - g_2\wp - g_3$.

Compute

$$2\wp'\wp'' = 12\wp^2\wp' - g_2\wp'$$
 to get $\wp'' = 6\wp^2 - \frac{1}{2}g_2$,

therefore

$$\mathfrak{G} = \mathfrak{F}\langle\wp\rangle = \mathfrak{F}(\wp,\wp')$$
.

Let $G(\mathfrak{G}/\mathfrak{F})$ be the group of all ∂ -automorphisms of \mathfrak{G} over \mathfrak{F} . If $\sigma \in G(\mathfrak{G}/\mathfrak{F})$ then

$$\sigma \wp'^2 = 4\sigma \wp^3 - g_2 \sigma \wp - g_3$$

We may think of $[\wp, \wp', 1]$ as an element of $E(\mathfrak{G})$, the elliptic curve with coordinates in \mathfrak{G} . (Recall E had coordinates in \mathfrak{C} .) The above equation shows that $\sigma[\wp, \wp', 1]$ is also an element of $E(\mathfrak{G})$. So we can subtract these points.

Assume that $\sigma \wp \neq \wp$ and let

$$[\gamma,\delta,1] = \sigma[\wp,\wp',1] - [\wp',\wp,1] = [\sigma\wp,\sigma\wp',1] + [\wp,-\wp',1]\,.$$

From the formulas above we have:

$$\gamma = -(\sigma\wp + \wp) + \frac{1}{4} \left(\frac{-\wp' - \sigma\wp'}{\wp - \sigma\wp} \right)^2$$

We claim that γ is a constant. First compute

$$\left(\frac{\wp' + \sigma\wp'}{\wp - \sigma\wp}\right)' = 2(\wp - \sigma\wp)$$

and then

$$\gamma' = -\sigma\wp' - \wp' + \frac{1}{2} \left(\frac{\wp' + \sigma\wp'}{\wp - \sigma\wp} \right) 2(\wp - \sigma\wp) = 0$$

Because

$$\delta^2 = 4\gamma_3 - g_2\gamma - g_3 \,,$$

 δ is also a constant.

By assumption, $\mathfrak{G}^{\partial} = \mathfrak{F}^{\partial} = \mathfrak{C}$ so $[\gamma, \delta, 1] \in E$.

Theorem 24.3. There is an mapping

$$G(\mathfrak{G}/\mathfrak{F}) \longrightarrow E$$

given by

$$\sigma \longmapsto \sigma[\wp, \wp', 1] - [\wp, \wp', 1]$$

It is injective and the image is an algebraic subgroup of E.