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Abstract

We start with the classical definition of Picard-Vessiot extension.
We show that the Galois group is an algebraic subgroup of GL(n).
Next we introduce the notion of Picard-Vessiot ring and describe the
Galois group as spec of a certain subring of a tensor product. We shall
also show existence and uniqueness of Picard-Vessiot extensions, using
properties of the tensor product. Finally we hint at an extension of
the Picard-Vessiot theory by looking at the example of the Weierstraß
℘-function.

We use only the most elementary properties of tensor products,
spec, etc. We will define these notions and develop what we need. No
prior knowledge is assumed.
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1 Introduction

Throughout this talk we fix an ordinary ∂-field F of characteristic 0 and with
algebraically closed field of constants

C = F∂

If you want, you may assume that F = C(x) is the field of rational functions
of a single complex variable.

I usually use the prefix ∂- instead of the word “differential”. Thus I speak of
∂-rings and ∂-fields, ∂-ideals, etc.

2 Classical Picard-Vessiot theory

We consider a linear homogeneous ∂-equation

L(y) = y(n) + an−1y
(n−1) + · · ·+ a0y = 0

Definition 2.1. By a fundamental system of solutions of L(y) = 0, we mean
a set η1, . . . , ηn of elements of some ∂-extension field G of F such that

1. L(ηi) = 0,

2. η1, . . . , ηn are linearly independent over C.

We usually write η = (η1, . . . ηn) for the row vector.

Definition 2.2. By a Picard-Vessiot extension for L we mean a ∂-field G

containing F such that

1. G∂ = F∂ = C,

2. G = F〈η1, . . . , ηn〉 where η1, . . . , ηn is a fundamental system of solutions
of L(y) = 0.
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Definition 2.3. Suppose that G is a Picard-Vessiot extension. Then the
group of ∂-automorphisms of G over F,

G(G/F) = ∂- Aut(G/F)

is called the Galois group of G over F.

Proposition 2.4. Suppose that G is a Picard-Vessiot extension. If σ ∈
G(G/F) then there is an invertible matrix c(σ) with constant coefficients such
that

ση = ηc(σ).

The mapping
c : G(G/F) → GL(n)

is an injective homomorphism.

Proof. The easiest way to see this is to look at the Wronskian matrix.

W =


η1 · · · ηn
η′1 · · · η′n
...

...

η
(n−1)
1 · · · η

(n−1)
n


Because η1, . . . , ηn are linearly independent over C the Wronskian is invert-
ible.

A simple computation shows that

W ′ =



η′1 · · · η′n

η′′1 · · · η′′n

...
...

η
(n)
1 · · · η

(n)
n

 =


0 1 0 . . . . . . . 0
... 0 1

...
... 0

. . .
...

...
. . . 1 0

0 . . . . . . . . . 0 1
−a0−a1. . . . . .−an−2−an−1





η1 · · · ηn

η′1 · · · η′n

...
...

η
(n−1)
1 · · · η

(n−1)
n


i.e.

W ′W−1 = A =


0 1 0 . . . . . . . 0
... 0 1

...
... 0

. . .
...

...
. . . 1 0

0 . . . . . . . . . 0 1
−a0−a1. . . . . .−an−2−an−1


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The matrix A is called the companion matrix for L.

Differentiate
c(σ) = W−1σW

and you get 0, so c(σ) ∈ GLC(n) = GL(C). The first row of W is η so

σW = Wc(σ) implies that η = ηc(σ) .

Suppose that σ, τ ∈ G(G/F). Then

c(στ) = W−1σ(Wc(τ)) = W−1σ(W )c(τ) = c(σ)c(τ) ,

because c(τ) has constant coordinates and therefore is left fixed by σ. There-
fore c is a homomorphism of groups. c is injective since G = F〈η〉 = F(W ).

3 Algebraic subgroups of GL(n)

Here we take a “classical” point of view, later on we shall be more “modern”
and use group schemes.

We start by putting a topology on “affine m-space”

Am = Cm

Definition 3.1. A subset X of Am is Zariski closed if there exists a finite
set of polynomials in m variables

f1, . . . , fr ∈ C[X1, . . . , Xm]

such that X is the “zero set” of f1 = · · · = fr = 0, i.e.

X = {(a1, . . . , am) ∈ Cm | f1(a1, . . . , am) = · · · = fr(a1, . . . , am) = 0} .
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We can drop the adjective “finite” in the definition. Indeed X being the zero
set of a collection fi (i ∈ I) of polynomials is equivalent to saying that X is
the zero set of the entire ideal

a = ((fi)i∈I)

and even the radical ideal
√

a = {f | f e ∈ a for some e ∈ N}

By the Hilbert Basis Theorem this ideal is generated by a finite number of
polynomials.

Theorem 3.2. (Hilbert Nullstellensatz) There is a bijection between closed
subsets of Am and radical ideals of C[X1, . . . , Xm].

Now let’s put a topology on GL(n), the set of invertible n× n matrices with
coefficients in C. We do this by embedding GL(n) into An2+1:c11 · · · c1n

...
...

cn1 · · · cnn

 7−→ (c11, . . . , c1n, . . . , cn1, . . . , cnn, 1/ det cij) ∈ An2+1 .

The image is closed, it is the zero set of

det(Xij)Y = 1

where Y is the (n2 + 1)st coordinate.

Definition 3.3. A subset X ⊂ GL(n) is Zariski closed is if it closed in the
subset topology as a subset of An2+1.

Definition 3.4. A linear algebraic group is a closed subgroup of GL(n) for
some n.

4 The Galois group of a Picard-Vessiot ex-

tension

In this section G is a Picard-Vessiot extension of F.
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Proposition 4.1. The image of

c : G(G/F) → GL(n)

is an algebraic subgroup of GL(n).

Proof. Let y1, . . . , yn be ∂-indeterminates over F. This means that

y1, . . . , yn, y
′
1, . . . , y

′
n, y

′′
1 , . . . y

′′
n, . . .

is an infinite family of indeterminates over F. We use vector notation and
write y = (y1, . . . , yn). Then

F{y} = F[y, y′, . . . ]

is a polynomial ring in an infinite number of variables. There is a homomor-
phism φ over F, called the substitution homomorphism, defined by

φ : F{y} −→ F{η}
yi 7−→ ηi

y′i 7−→ η′i
...

Evidently, it is a ∂-homomorphism. Let p be its kernel

0 - p - F{y} φ - F{η} - 0

For C ∈ GL(n) we let ρC be the substitution homomorphism

ρC : F{y} −→ F{y}
y 7−→ yC

This means
yi 7−→

∑
j

yjCji .

Lemma 4.2. C is in the image of c : G(G/F) → GL(n) if and only if

ρCp ⊂ p and ρC−1p ⊂ p

(This is equivalent to ρCp = p.)
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Proof. Suppose that C = c(σ) for some σ ∈ G(G/F). We have both

ση = ηC and ρCy = yC

We have the commutative diagram:

0 - p - F{y} φ - F{η} - 0

?

ρC

?

σ

0 - p - F{y} φ - F{η} - 0

To show that ρCp ⊂ p, we “chase” the diagram. If a ∈ p then φa = 0 so

0 = σ(φa) = φ(ρCa)

which implies that
ρCa ∈ kerφ = p .

We have shown that
ρCp ⊂ p .

For the other inclusion, use σ−1.

Now suppose that ρCp = p. Then there is a ∂-homomorphism ψ

0 - p - F{y} φ - F{η} - 0

?

ρC

?

ρC

·········?
ψ

0 - p - F{y} φ - F{η} - 0

In fact ψ is defined by

ψa = φ(ρCA), where φA = a (a ∈ F{η}, A ∈ F{y}) .

Since φy = η, we have the matrix equation

ψη = φ(ρC(y)) = φ(yC) = ηC

We can see that ψ is bijective by diagram chasing. Tberefore ψ extends to a
∂-automorphism of the field of quotients

σ : F〈η〉 = G → G
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So σ ∈ G(G/F) and since ση = ηC,

c(σ) = C .

We think of p as a vector space over F and choose a basis A for it. We also
extend A to a basis B of F{y} over F, so that A ⊂ B.

Lemma 4.3. There exist polynomials

Qbc ∈ F[X11, . . . , Xnn] b, c ∈ B

with the property that for every C ∈ GL(n) and b ∈ B,

ρC(b) =
∑
d∈B

Qbc(C) d .

Proof. We first examine how ρC acts on F{y}. Let M be the set of monomials,
thus an element M of M is a power product

M =
r∏

k=1

(
y

(ek)
ik

)
fk

of the yi and their derivatives. Since the coordinates of C are constants,

ρC(y
(e)
i ) =

∑
k

y
(e)
k Cki .

The right hand side is linear combination of the y
(e)
i with coefficients that

are coordinates of C. If we apply ρC to a monomial we will get product
of these right hand sides which is a linear combination of monomials with
coefficients that are polynomials over Z in the coordinates of C. I.e. there
exist polynomials

PMN ∈ Z[X11, . . . , Xnn] M,N ∈ M

such that
ρCM =

∑
N∈M

PMN(C)N .
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Because B and M are both bases of F{y} over F, we can express each element
of B as a linear combination over F of monomials, and, conversely, every
monomial as a linear combination over F of elements of B. It follows that
there exist polynomials

Qbc ∈ F[X11, . . . , Xnn] b, c ∈ B

with the property that for every C ∈ GL(n) and b ∈ B,

ρC(b) =
∑
d∈B

Qbc(C) d .

Lemma 4.4. There is a (possibly infinite) family of polynomials

Ri ∈ F[X11, . . . , Xnn, Y ] i ∈ I

such that C ∈ GL(n) is in the image of c if and only if

Ri(C,
1

detC
) = 0, i ∈ I

Proof. We know, by Lemma 4.2, that C ∈ GL(n) is in the image of c if and
only if

ρCp ⊂ p and ρC−1p ⊂ p .

Recall that A is a basis of p over F and, by the previous lemma,

ρC(a) =
∑
b

Qab(C) b

so ρCp ⊂ p if and only if

Qab(C) = 0 for every a ∈ A, b ∈ B, b /∈ A .

Similarly ρC−1p ⊂ p if and only if

Qab(C
−1) = 0 for every a ∈ A, b ∈ B, b /∈ A .

Of course, the coordinates of C−1 are 1
detC

times polynomials in the coordi-
nates of C. Thus there exist polynomials

Rab ∈ F[X11, . . . , Xnn, Y ]
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such that
Rab(C,

1
detC

) = Qab(C
−1)

To conclude the proof of the theorem we need to find polynomials as above,
except that the coefficients should be in C not F.

Choose a basis Λ of F over C. We then can write

Ri =
∑
λ∈Λ

Siλ λ

where
Siλ ∈ C[X11, . . . , Xnn, Y ] .

If Ri(C,
1

detC
) = 0 then

0 =
∑
λ∈Λ

Siλ(C,
1

detC
)λ

Because the elements of Λ are linearly independent over C, we must have

Siλ(C,
1

detC
) = 0 for all λ ∈ Λ

It follows from the previous lemma that C ∈ GL(n) is in the image of c if
and only if

Siλ(C,
1

detC
) = 0 for all i ∈ I and λ ∈ Λ

This proves the theorem.

5 Matrix equations

Starting with a linear homogeneous ∂-equation (a scalar ∂-equation) we chose
a fundamental system of solutions η1, . . . , ηn and formed the Wronskian η1 · · · ηn

...
...

η
(n−1)
1 · · · η

(n−1)
n


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We discovered that
W ′ = AW

where

A =


0 1 0 . . . . . . . 0
... 0 1

...
... 0

. . .
...

...
. . . 1 0

0 . . . . . . . . . 0 1
−a0−a1. . . . . .−an−2−an−1


was a matrix with coefficients in F.

We can also start with a matrix equation

Y ′ = AY

where A ∈ MatF(n) is any matrix with coordinates in F, and look for a
solution matrix Z that is invertible. The matrix Z is called a fundamental
solution matrix for the matrix ∂-equation.

6 The Picard-Vessiot ring

Let A ∈ MatF(n) be a given n× n matrix with coefficients in F.

Definition 6.1. By a Picard-Vessiot ring for A we mean an integral domain
R such that

1. (qf R)∂ = F∂ = C,

2. R = F[Z,Z−1] where Z ′Z−1 = A ∈ MatF(n).

Item 2 could also be written R = F[Z, 1
detZ

]. There is a popular “abuse of
notation” that writes R = F[Z, 1

det
].

Proposition 6.2. If G = F〈η〉 = F(W ) is a Picard-Vessiot extension, as
before, then R = F[W,W−1] is a Picard-Vessiot ring.

Conversly, if R is a Picard-Vessiot ring then G = qf R is a Picard-Vessiot
extension.
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If F contains a non-constant this is a consequence of the “cyclic vector the-
orem”. If F = C it must (and can be) proven by a different method.

Definition 6.3. By the Galois group of R over F, denoted G(R/F) we mean
the group of a ∂-automorphisms of R over F.

Proposition 6.4. If G = qf R, then G(R/F) = G(G/F).

7 Differential simple rings

Definition 7.1. Let R be a ∂-ring. We say that R is ∂-simple if R has no
proper non-trivial ∂-ideal.

In algebra (not ∂-algebra) a simple (commutative) ring R is uninteresting.
Indeed (0) is a maximal ideal and the quotient

R/(0) = R

is a field, i.e. R is a field. But in ∂-algebra the concept is very important.

Example 7.2. Let R = C[x] where x′ = 1 is ∂-simple. If a ⊂ R is a
non-zero ∂-ideal then it contains a non-zero polynomial. Choose a non-zero
polynomial P (x) in a having smallest degree. But P ′ ∈ a has smaller degree,
so P ′ = 0. But that makes P ∈ C so 1 ∈ a.

Note that (0) is a maximal ∂-ideal (there is no proper ∂-ideal containing it)
but is not a maximal ideal.

More generally, if R is any ∂-ring and m a maximal ∂-ideal of R then R/m
is ∂-simple. It is a field if and only if m is a maximal ideal.

Proposition 7.3. Let R be a Picard-Vessiot ring. Then R is ∂-simple.

Proposition 7.4. Suppose that R is a ∂-simple ring containing F. Then

1. R is an integral domain, and
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2. (qf R)∂ = C.

This suggests a way of creating Picard-Vessiot rings.

Theorem 7.5. Let A ∈ MatF(n). Then there exists a Picard-Vessiot ring R

for A.

Proof. Let y = (yij) be a family of n2 ∂-indeterminates over F and let

S = F{y}[ 1
det y

]

(The derivation on F{y} extends to S by the quotient rule.) We want to find
a maximal ∂-ideal of S that contains the ∂-ideal

a = [y′ − Ay]

We can do this, using Zorn’s Lemma, as long as a is proper, i.e. no power of
det y is in a. But this is certainly true since every element of a has order at
least 1 and det y has order 0.

Let m be a maximal ∂-ideal of S that contains a and set

R = S/m

R is ∂-simple so it is a domain and (qf R)∂ = C. If Z is the image of the
matrix y in R then

Z ′ = AZ

since a is contained the kernel of S → R.

Corollary 7.6. Given a linear homogeneous ∂-equation L(y) = 0 there exists
a Picard-Vessiot extension for L.

8 Example where [y′ − A] is not maximal

The example I gave at the seminar was wrong. I had forgotten that the
containing ring is F{}[ 1

det y
].
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Let F = C(ex) and A = 1 (a 1× 1 matrix). The we must look at the ideal

[y′ − y] ⊂ F{y}[ 1
y
] = F{y, 1

y
}

I had asserted that [y′−y] ⊂ [y], which is indeed true, but not relevant, since
1 ∈ [y]. However

[y′ − y] ⊂ [y − ex] .

Indeed
y′ − y = (y − ex)′ − (y − ex)

Also [y−ex] is a maximal ∂-ideal (even a maximal ideal) since it is the kernel
of the substitution homomorphism

F{y, 1
y
} → F{ex, e−x} = C(ex) = F

9 Tensor products

Let R and S be ∂-rings that both contain F. We are interested in the tensor
product

R⊗F S

This is a ∂-ring. The easiest way to describe it uses vector space bases.

Let {xi}, (i ∈ I), be a vector space basis of R over F and {yj}, (j ∈ J), be
a basis of S over F. Consider the set of all pairs (xi, yj) and the set R⊗F S

of all formal finite sums∑
i.j

aij(xi, yj) where aij ∈ F

R⊗F S is a vector space over F with basis (xi, yi).

If x =
∑

i aixi ∈ R and y =
∑

j bjyj ∈ S we write

x⊗ y =
∑
i

∑
j

aibj(xi, yj) ∈ R⊗F S

We have
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1. (x+ x)⊗ y = x⊗ y + x⊗ y

2. x⊗ (y + y) = x⊗ y + x⊗ y

3. a(x⊗ y) = ax⊗ y = x⊗ ay

One defines multiplication so that

(x⊗ y)(x⊗ y) = xx⊗ yy

and shows that R ⊗F S is a ring. Finally we define a derivation with the
property

(x⊗ y)′ = x′ ⊗ y + x⊗ y′

and we get a ∂-ring.

We have two “canonical” mappings

α : R −→ R⊗F S

a 7−→ a⊗ 1

and

β : S −→ R⊗F S

a 7−→ 1⊗ a

10 C⊗R C

Be careful. Tensor products are usually much worse than the rings you
started with. For example

C⊗R C

is not a field, in fact it is not even an integral domain! Indeed

(i⊗ 1 + 1⊗ i)(i⊗ 1− 1⊗ i) = −1⊗ 1− i⊗ i+ i⊗ i− 1⊗−1 = 0

In fact C⊗R C ≈ C× C. Every element of C⊗R C has the form

x = a(1⊗ 1) + b(i⊗ 1) + c(1⊗ i) + d(i⊗ i)
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We define φ : C⊗R C → C2 by

φ(x) =
(
(a+ d) + (b− c)i, (a− d) + (b+ c)i

)
It is straightforward to check that φ is an isomorphism or rings.

11 Uniqueness of a Picard-Vessiot ring

Suppose that R and S are both Picard-Vessiot rings for the matrix A. Say

R = F[Z,Z−1] S = F[W,W−1]

where
Z ′Z−1 = A = W ′W−1

If Z and W were in some common ring extension T of both R and S, then

W = ZC

for some matrix of constants, C ∈ T∂. We can easily find a common ring
extension of both R and S, namely

R⊗F S

And we can find one whose ring of constants is C

T = (R⊗F S)/m

where m is a maximal ∂-ideal of R⊗F S. (It is ∂-simple!)

Proposition 11.1. Suppose that m is a maximal ∂-ideal of R⊗F S and let

π : R⊗F S → (R⊗F S)/m = T

be the canonical homomorphism. Then

φ : R
α−−−→ R⊗F S

π−−−→ T

and

ψ : S
β−−−→ R⊗F S

π−−−→ T

are isomophisms.
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Proof. The kernel of φ is a proper ∂-ideal of R. Because R is ∂-simple, this
ideal must be (0), so φ is injective.

Since Z ′ = AZ and W ′ = AW and A has coefficients in F,

C = π(1⊗W )π(Z ⊗ 1)−1

is a matrix of constants and hence has coordinates in C. Therefore

π(1⊗W ) = Cπ(Z ⊗ 1) = π(CZ ⊗ 1)

and
π(1⊗ S) ⊂ π(R⊗ 1)

or
T = π(R⊗ S) ⊂ π(R⊗ 1) = π(α(R)) .

The following proposition says that a Picard-Vessiot ring for A is unique
up to ∂-isomorphism. It follows that a Picard-Vessiot extension for a linear
homogeneous ∂-equation is also unique up to a ∂-isomorphism.

Theorem 11.2. R and S are ∂-isomorphic.

Proof. Both R and S are ∂-isomorphic to T.

12 R⊗F R

We continue to assume that R is a Picard-Vessiot ring. Here we are interested
in the ∂-ring

R⊗F R

and in particular relating it to the Galois group G(R/F).

Let σ ∈ G(R/F). Define a mapping

σ̄ : R⊗F R → R

by
σ̄(a⊗ b) = aσb .
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Proposition 12.1. If σ ∈ G(R/F) then the kernel of σ̄ is a maximal ∂-ideal
mσ.

Proof.
(R⊗F R)/mσ ≈ R

Because R is ∂-simple, mσ is a maximal ∂-ideal.

Proposition 12.2. Let σ ∈ G(R/F). Then mσ is generated as an ideal by

σa⊗ 1− 1⊗ a a ∈ R .

Proof. If a ∈ R then

σ̄(σa⊗ 1− 1⊗ a) = σa− σa = 0

so σa⊗ 1− 1⊗ a ∈ mσ.

Now suppose that

x =
∑
i

ai ⊗ bi ∈ mσ so that
∑
i

aiσbi = 0

Then

x =
∑
i

(ai ⊗ 1)(1⊗ bi − σbi ⊗ 1) +
∑
i

aiσbi ⊗ 1

= −
∑
i

(ai ⊗ 1)(σbi ⊗ 1− 1⊗ bi)

With this we can prove the converse of Proposition 12.1.

Theorem 12.3. Let m be a maximal ∂-ideal of R ⊗F R. Then there exists
σ ∈ G(G/F) such that m = mσ.

Proof. Set
T = (R⊗F R)/m, π : R⊗F R → T
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By Proposition 11.1 the mappings

π ◦ α : R → T and

π ◦ β : R → T

are isomorphisms.

Define
σ : R → R by σ = (π ◦ α)−1 ◦ (π ◦ β)

i.e., so that
R

σ - R

β

? ?

α

R⊗F R
π - T

π� R⊗F R

commutes.

Let a ∈ R, then But

π(σa⊗ 1− 1⊗ a) = π(α(σa))− π(βa) = (π ◦ α ◦ σ)(a)− (π ◦ β)(a) = 0

Therefore
σa⊗ 1− 1⊗ a ∈ kerπ = m

By Proposition 12.2
mσ ⊂ m

But mσ is a maximal ∂-ideal, therefore

mσ = m .

We have shown that G(R/F) is in bijective correspondence (i.e. can be
identified with the set of maximal ∂-ideals of R⊗F R, i.e.

G(R/F) ≈ max diffspec(R⊗F R) .

We have diffspec but we want spec.

19



13 C⊗R C bis

C is a Galois extension of R with Galois group {id, γ}, γ being complex
conjugation. It turns out that C ⊗R C has precisely two prime ideals and
they are both maximal. The first is generated by

a⊗ 1− 1⊗ a a ∈ C

which corresponds the the identity automorphism, and the other generated
by

γa⊗ 1− 1⊗ a a ∈ C

which corresponds to the automorphism γ. Thus

max spec(C⊗R C) = spec(C⊗R C)

is a finite scheme, which is in fact a group scheme and is isomorphic to the
Galois group.

14 The constants of R⊗F R

Definition 14.1. Let
K = (R⊗F R)∂

Remember that R∂ = C, so we might expect K to be rather small (maybe
K = C). This is very far from the truth.

Example 14.2. Let F = C(x) and let

Z = (ex) ∈ GL(1)

Note that
Z ′ = Z, so A = 1 .

The Picard-Vessiot ring is

R = F[ex, e−x] .
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Then
(ex ⊗ e−x)′ = ex ⊗ e−x + ex ⊗ (−e−x) = 0

so
c = ex ⊗ e−x ∈ K

Example 14.3. Now let

Z =

(
1 log x
0 1

)
Here

Z ′ =

(
0 1

x

0 0

)
=

(
0 1

x

0 0

) (
1 log x
0 1

)
= AZ

and
R = F[log x]

Let
c = log x⊗ 1− 1⊗ log x

then

c′ =
1

x
⊗ 1− 1⊗ 1

x
= 0

so γ ∈ K.

If M,N ∈ MatR(n) we define

M ⊗N ∈ MatR⊗FR(n)

be the matrix whose ijth coordinate is

(M ⊗N)ij =
∑
k

Mik ⊗Nkj

Proposition 14.4. Suppose that R = F[Z,Z−1]. Then

γ = Z ⊗ Z−1

is a matrix of constants.

Theorem 14.5.
K = C[γ, γ−1]
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15 Ideals in R⊗C K

Definition 15.1. Let
I(K)

denote the set of ideals of K and

I(R⊗C K)

the set of ∂-ideals of R⊗C K.

Suppose that ao is an ideal of K, then

R⊗C ao

is a ∂-ideal of R⊗C K. This gives a mapping

Φ: I(K) −→ I(R⊗C K)

If a ∈ R⊗C K is a ∂-ideal then

{c ∈ K | 1⊗ c ∈ a}

is an ideal of K and we have a mapping

Ψ: I(R⊗C K) −→ I(K)

Theorem 15.2. The mappings Φ and Ψ are bijective and inverse to each
other.

The mappings Φ and Ψ are order-preserving, so we get a bijection between
maximal ideals of K and maximal ∂-ideals of R⊗C K.

16 R⊗F R ≈ R⊗C K

This is one of the most important theorems of Picard-Vessiot rings.
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Recall that
K = (R⊗F R)∂

so, in particular, K ⊂ R⊗F R. We have a homomorphism

φ : R⊗C K −→ R⊗F R

given by
r ⊗ k 7−→ (r ⊗ 1) k

Theorem 16.1. R⊗F R ≈ R⊗C K

Proof. We consider
φ : R⊗C K −→ R⊗F R

The kernel is a ∂-ideal of R⊗C K. By Theorem 15.2, there is an ideal ao ⊂ K

with
R⊗ ao = kerφ

But φ restricted to 1⊗K is injective, so ao = 0. Therefore φ is injective.

For surjectivity we need to show that 1⊗ R ⊂R⊗ 1)[K]. But

1⊗ Z = (Z ⊗ 1)(Z−1 ⊗ Z) = (Z ⊗ 1)γ ∈ (R⊗ 1)[K]

17 spec K

Theorem 17.1. If R is a Picard-Vessiot ring and

K = (R⊗F R)∂

then

G(R/F) ≈ max diffspec(R⊗F R)

≈ max diffspec(R⊗C K)

≈ max spec K

Proof. The first line is Theorem 12.3, the second line is Theorem 16.1 and
the last is Theorem 15.2.
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18 Zariski topology on spec K

X = spec K is the set of prime ideals of K. If a ⊂ K is a radical ideal, then
we define

V (a) = {p ∈ K | a ⊂ p}

Note that V is order-reversing:

a ⊂ b =⇒ V (a) ⊃ V (b)

Also

V ((1)) = ∅
V ((0)) = X

V (a ∩ b) = V (a) ∪ V (b)

V (
⋃
i

ai) =
⋂
i

V (ai)

We put a topology on X, called the Zariski topology, by defining the closed
sets to be sets of the form V (a) for some radical ideal a of K.

By a closed point p of X we mean a point (prime ideal) such that

V (p) = {p} .

Thus the closed points are precisely the maximal ideals, i.e. the set of closed
points is what I previously called max spec K.

We can do the same thing for ∂-rings R. Thus diffspec R is the set of prime
∂-ideals, if a is a radical ∂-ideal of R then V (a) is defined similarly. And
we get a topology, called the Kolchin topology. The set of closed points is
max diffspec R.

Beware Despite the similarity of definitions of diffspec R and spec K, there
are vast differences in the theory.

I want to describe max spec K a little further. We know that

K = C[γ, 1
det γ

]
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where γ = Z−1 ⊗ Z ∈ MatK(n). Let X = (Xij) be indeterminates over C

and Y another indeterminate. Then

π : C[X, Y ] −→ K

X 7−→ γ

Y 7−→ 1

det γ

We have an exact sequence

0 - a - C[X, Y ]
π - K - 0

where a is the kernel of π.

An element of max spec K comes from a maximal ideal of C[X, Y ] that con-
tains a and conversely, i.e.

max spec K ≈ {m ⊂ C[X, Y ] | m is a maximal ideal that contains a}

If c ∈ GL(n) is a zero of a then

m = (X − c, (det c)Y − 1)

is a maximal ideal containing a. The converse is also true - this is the weak
Hilbert Nullstellensatz. Therefore the set of maximal ideals containing a,
max spec K, is the zero set of a.

19 Affine scheme and morphisms

Theorem 19.1. Let R and S be C-algebras. An algebra homomorphism

φ : R→ S

induces a scheme morphism

aφ : specS → specR
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Conversely, a scheme morphism

f : specS → specR

induces an algebra homomorphism

f# : R→ S

There is a bijection

Mor(specS, specR) ≈ Hom(R,S)

Note that the arrows get reversed.

Theorem 19.2. Let R and S be C-algebras. Then

specR× specS = spec(R⊗C S)

20 Group scheme

A group in the category of sets is well-known. But a group in the category
of schemes is somewhat different. It is NOT a group in the category of sets.
In category theory one deals with objects and arrows. Here too. We write
G = spec K and C = spec C. All products are over C, i.e. × = ×C .

Definition 20.1. G = spec K is a group scheme if there are mappings

m : G×G→ G, (multiplication)

e : C → G, (identity)

i : G→ G, (inverse)

such that the following diagrams commute.

G×G×G
m×idG - G×G

?

idG×m
?

m

G×G
m - G

(associativity)

26



G× C
idG×e - G×G

?

m

G
idG - G

6
m

C ×G
e×idG - G×G

(identity)

G×G

(idG,i)

�
�

�� m@
@

@R
G - C

e - G

(i,idG)

@
@

@R
m

�
�

��

G×G

(inverse)

21 Hopf algebra

We can translate the group scheme mappings into algebra homomorphisms.

Definition 21.1. K is a Hopf algebra if there are mappings

∆: K → K⊗K, (comultiplication)

I : K → C, (coidentity)

S : K → K, (coinverse or antipode)

such that the following diagrams commute.

K
∆ - K⊗K

?
∆

?

∆⊗idK

K⊗K
idK⊗∆ - K⊗K⊗K

(coassociativity)
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K⊗K
idK⊗I - K⊗ C

6
∆

K
idK - K

?
∆

K⊗K
I×idK - C⊗K

(coidentity)

K×K

idK⊗S �
�

�	

∆

@
@

@I

K � C
I� K

S⊗idK
@

@
@I

∆

�
�

�	
K⊗K

(antipode)

Theorem 21.2. K is a Hopf algebra if and only if spec K is a group scheme.
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22 Sweedler coring

There is a natural structure of coring (which I will not define) on R ⊗F R

defined by

∆: R⊗F R −→ (R⊗F R)⊗R (R⊗F R)

a⊗ b 7−→ a⊗ 1⊗ 1⊗ b

I : R⊗F R −→ F

a⊗ b 7−→ ab

S : R⊗F R −→ R⊗F R

a⊗ b 7−→ b⊗ a

This looks like a Hopf algebra but, in fact, is not quite.

Proposition 22.1. The mappings above restrict to

∆∂ : K −→ K⊗C K

I∂ : K −→ C

S∂ : K −→ K

Theorem 22.2. K together with ∆∂, I∂ and S∂ is a Hopf algebra.

Theorem 22.3. spec K is a group scheme.

23 Matrices return

We can compute the comultiplication ∆ on K. Recall that

K = C[γ,
1

det γ
], γ = Z−1 ⊗ Z .

so
∆(γ) = Z−1 ⊗F 1⊗R 1⊗F Z = Z−1 ⊗F Z ⊗R Z

−1 ⊗F Zγ ⊗R γ
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because Z has coordinates in R. Thus

∆∂(γ) = γ ⊗C γ

i.e.
∆∂(γij) =

∑
k

γik ⊗C γkj

which is matrix multiplication.

Also
I(γ) = I(Z−1 ⊗ Z) = Z−1Z = 1 ∈ GLR(n)

so
I∂(γ) = 1 ∈ GLC(n)

Finally

S(γ) = S(Z−1 ⊗F Z) = Z ⊗F Z
−1 = (Z−1 ⊗ Z)−1 = γ−1

24 The Weierstraß ℘-function

Up to now we have dealt only with Picard-Vessiot extensions. The Galois
group is a subgroup of GL(n), in particular, it is affine. There is a more
general theory, the theory of strongly normal extensions. Here we examine
one simple example. We use classical language of algebraic geometry.

Start with projective 2-space P2 = P2(C). This is the set of equivalence class
of triples

(a, b, c) ∈ C3 (a, b, c) 6= 0 ,

modulo the equivalence relation

(a, b, c) ∼ (λa, λb, λc) λ ∈ C, λ 6= 0 .

The equivalence class of (a, b, c) is denoted [a, b, c].

Recall that a polynomial P ∈ C[X, Y, Z] is homogeneous if every term has
the same degree. A subset S ⊂ P2 is closed (in the Zariski topology) if it is
the set of all zeros of a finite set of homogeneous polynomials

f1, . . . , fr ∈ C[X, Y, Z]
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We define E ⊂ P2 to be the elliptic curve, the zero set of the single homoge-
neous polynomial

Y 2Z − 4X3 + g2XZ
2 + g3Z

3

where g2, g3 ∈ C and the discriminant g3
2 − 27g2

3 is not 0.

If [a, b, c] ∈ E and c 6= 0 then

[a, b, c] = [
a

c
,
b

c
, 1] = [x, y, 1], y2 = 4x3 − g2x− g3 .

If c = 0 then it follows that a = 0. We get the single point [0, 1, 0] which we
denote by ∞.

We can interpret the equation y2 = 4x3 − g2x − g3 as defining a Riemann
surface. It has genus 1. We can integrate on this surface and the integral is
defined up to homotopy (which we call “periods”).

Theorem 24.1. (Abel) Given P1, P2 ∈ E there is a unique P3 ∈ E such that∫ P1

∞

dt

s
+

∫ P2

∞

dt

s
=

∫ P3

∞

dt

s
(mod periods)

Here t is a dummy variable and s2 = 4t3 − g2t− g3.

This puts an addition on E and makes it an algebraic group.

It turns out that
−[x, y, 1] = [x,−y, 1]

Suppose that [x1, y1, 1] and [x2, y2, 1] are in E and x1 6= x2. Then

[x1, y1, 1] + [x2, y2, 1] =

[−(x1 + x2) + 1
4

( y2 − y1

x2 − x1

)2

, −
( y2 − y1

x2 − x1

)
x3 −

y1x2 − y2x1

x2 − x1

, 1]

Weierstraß inverted the integral to define ℘(x):

x =

∫ ℘(x)

∞

dt

s
.
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so that
℘′2 = 4℘3 − g2℘− g3 .

In general, we simply define ℘ to be a solution of this ∂-equation.

Definition 24.2. A ∂-field extension G of F is said to be Weierstrassian if

1. G∂ = F∂ = C,

2. G = F〈℘〉 where ℘′2 = 4℘3 − g2℘− g3.

Compute

2℘′℘′′ = 12℘2℘′ − g2℘
′ to get ℘′′ = 6℘2 − 1

2
g2 ,

therefore
G = F〈℘〉 = F(℘, ℘′) .

Let G(G/F) be the group of all ∂-automorphisms of G over F. If σ ∈ G(G/F)
then

σ℘′2 = 4σ℘3 − g2σ℘− g3

We may think of [℘, ℘′, 1] as an element of E(G), the elliptic curve with
coordinates in G. (Recall E had coordinates in C.) The above equation
shows that σ[℘, ℘′, 1] is also an element of E(G). So we can subtract these
points.

Assume that σ℘ 6= ℘ and let

[γ, δ, 1] = σ[℘, ℘′, 1]− [℘′, ℘, 1] = [σ℘, σ℘′, 1] + [℘,−℘′, 1] .

From the formulas above we have:

γ = −(σ℘+ ℘) + 1
4

(−℘′ − σ℘′

℘− σ℘

)2

We claim that γ is a constant. First compute(℘′ + σ℘′

℘− σ℘

)′
= 2(℘− σ℘)
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and then

γ′ = −σ℘′ − ℘′ + 1
2

(℘′ + σ℘′

℘− σ℘

)
2(℘− σ℘) = 0

Because
δ2 = 4γ3 − g2γ − g3 ,

δ is also a constant.

By assumption, G∂ = F∂ = C so [γ, δ, 1] ∈ E.

Theorem 24.3. There is an mapping

G(G/F) −→ E

given by
σ 7−→ σ[℘, ℘′, 1]− [℘, ℘′, 1]

It is injective and the image is an algebraic subgroup of E.
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