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Abstract

Under both Ritt and Kolchin, basic differential algebra was developed from a constructive view
point and the foundation they built has been advanced and extended to become applicable in symbolic
computation. In the first talk, we begin with a study of the division algorithm and how it may be
modified and used to perform reductions in polynomial rings, ordinary and then partial differential
polynomial rings. The abstract notions of (partial) differential rings, fields, and differential polynomi-
als will be covered and no prerequisite is necessary. We will use examples to illustrate how differential
polynomials may be ordered and manipulated algebraically using Euclidean-like division. The goal is
to apply the reduction algorithms for ideal membership decisions, when possible, and to ”simplify”
a given system of algebraic differential equations like reducing the order, degree, and number of un-
knowns, or breaking the system up into ”simpler” systems. We will compare this with the analogous
operations on algebraic systems. More formally, we will cover the concepts of term-ordering and
ranking, partial reduction and reduction, autoreduced sets, Grobner basis and characteristic sets.

In the second talk, we will discuss methods to compute Grobner basis and characteristic sets and
the role they play in computational differential algebra: Are there constructive methods, though not
necessarily efficient, to solve basic decidability problems? Each algebraic problem has a differential
version simply by adding the word ”differential” to appropriate places. The ideal membership problem,
“Can we tell if a given (differential) polynomial ideal contains a given (differential) polynomial?” will
be revisited. Other questions to be discussed are: Can we tell if a given (differential) polynomial ideal
is prime? or radical? Does a (differential) polynomial ideal have a finite basis? How do the algebraic
and differential analogs differ?

Both this talk and the October 28 talk will be informal and aimed at beginning graduate students.
More rigorous treatment is available from my tutorial paper.
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Perhaps the simplest and most familiar algorithm is that of long division.1

7 * * * *

_______________

* * * ) * 7 * * 7 * *

* * *

_____

* * * 7

* * *

_______

* * *

* * *

_____

* * * *

* * * 7

_______

7

Given two positive numbers m and n, we can divide m by n to get a unique quotient q and a unique

remainder r such that

m = qn + r, r < n.

We observe that if r = 0, then n | m, in other words, m belongs to the ideal generated by n in the ring

Z. And conversely. The division algorithm thus provides a test for ideal membership. For this test,

the quotient is not important. From the equation: m = qn + r, we know that if a number p divides n,

then p will divide m if and only if it divides r. Thus the remainder r is a simplification of m as far

as divisibility is concerned.

1In the above division, * denotes a digit not equal to 7. You should be able to recover all the digits. This is a variation
of a puzzle taken from Fun with Figures, by L. Harwood Clarke, 2nd ed., William Heinemann Ltd, 1956.
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What is really required of this algorithm? A brief moment of reflection suggests the following:

1. We need to represent m in some base b (say 10). This means we actually write m as a polynomial

in b with coefficients that are between 0 and b− 1. In particular, as a linear combination of powers

of b. And similarly for n, q, and r.

m = mkb
k + · · ·+ m0

n = n`b
` + · · ·+ n0

q = qhb
h + · · ·+ q0

r = rgb
g + · · ·+ r0

2. Obviously, we need to order the digits (terms) in this representation in decreasing powers of the

base (by means of place-value).

3. If n > m (order the numbers), we simply let q = 0 and r = m and stop.

4. Otherwise, we use a recursive procedure that begins by

(a) Deciding the most significant digit qh of the quotient q, including its place-value h.

(b) Multiply n by qhb
h

(c) Subtract the result in (b) from m to get m′

5. Repeat Steps 3 and 4 using m′ instead of m

6. For divisibility, test r = 0 (Equality test, zero test)

3



In short, we need a data representation, and perhaps independent of the data representation, an

ordering of the terms (digits), an ordering of the numbers, equality testing, zero-testing, and a

recursive procedure to reduce the “size” of dividend m. The step (4) above may be called a reduction

step and m′ called the reductum of m by n.

What happens if we want to continue to divide r by another divisor?

Suppose we want to divide 29 by both 15 and 10. We can either divide 29 first by 15, get a remainder

14 and then divide 14 by 10 to get a remainder 4, or we can divide 29 first by 10, get a remainder 9 and

then divide by 15 to get a remainder 9. The final remainder is no longer unique and depends on the order

in which division is performed. However, in each case:

If the divisors are n1 and n2, we get some quotients q1, q2 and some remainder r such that

m = q1n1 + q2n2 + r

and while r is not unique, we can still say that m is in the ideal generated by n1, n2 if r = 0.

What about the converse?
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What happens if we “mix” the reduction steps?

Let’s divide 3275 by 15 and 10 in two way. First:

1. 3275 = 200*15 + 275

2. 275 = 20*10 + 75

3. 75 = 5*15 + 0

Second:

1. 3275 = 300*10 + 275

2. 275 = 10*15 + 125

3. 125 = 10*10 + 25

4. 25 = 2*10 + 5

Now we get two different remainders, one zero, the other not. So the converse is not true, and

the “mixed” reduction algorithm is not useful for testing ideal membership: it may miss.

But still, the equation m = q1n1 + q2n2 + r is valid, and a number p that divides both n1 and n2 will

divide m if and only if it divides r. So r is still a simplification of m for divisibility.
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To make the algorithm work, we need to find a specific ordering of all the divisors and a

specific order in the reduction steps that would guarantee the converse: if m is in the ideal

(n1, n2), then the computed remainder must be zero.

As far as the ideal membership problem goes, we don’t really care about n1, n2. Perhaps we can replace

them by another set of generators that will have the uniqneness-of-remainder property. For the ring of

integers, this is obtained by using the gcd since Z is a PID (principal ideal domain). In the example,

if we use the single divisor 5 (gcd of 15, 10), the remainder will be zero if and only if m is in the ideal

(10, 15) = (5).

It is clear that the division algorithm works equally well (in fact easier) with minor modification in a

polynomial ring K[x] in one variable over a field K. In univariate polynomial division, we want to

remove the leading term (that is, term with the highest degree in x) of the dividend only. We will still

obtain a relationship M(x) = Q(x)N(x) + R(x) which will tell us that a zero of N(x) will be a zero of

M(x) if and only if it is a zero of R(x). (Remainder Theorem)

The rest of this talk simply generalizes the ideas here for polynomial rings and then differential poly-

nomial rings. The methods of Gröbner basis and characteristic set are two approaches to solve this

problem in the polynomial world.
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What happens if the coefficient domain is not a field but just an integral domain?

Take an example for division in Z[x]. Suppose we divide

M = 6x4 + 4x2 + 3x

by

N = 4x2 + 1.

Unlike integer division of 60430 by 401, which gives 60430 = 150×401+280, we cannot divide 4x2 into

6x4 exactly and we can’t use the other lower terms to help either. In a way, this simplifies the algorithm!

What we need is to multiply the dividend by 4 before dividing. So we have, applying the reduction

step twice, the following:

1. 4M = 24x4 + 16x2 + 12x (pre-multiplication)

2. 4M = 6x2N + (10x2 + 12x) (normal reduction step)

3. M ′ = 10x2 + 12x (first pseudo-remainder)

4. 4M ′ = 40x2 + 48x (pre-multiplication)

5. 4M ′ = 10N + (48x− 10) (normal reduction step)

6. M ′′ = 48x− 10 (second pseudo-remainder)
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The entire process is called pseudo-division, and each reduction step (steps 1, 2 or steps 4, 5 in the

example) is called a pseudo-reduction. The final remainder M ′′ is called a pseudo-remainder. The

coefficient of the leading term of the divisor N (4 in the example) is called the initial of N .

If the initial of the divisor N is denoted by I, then we have

IeM = QN + R

where e is some natural number called a pseudo-exponent, Q is a pseudo-quotient and R is a pseudo-

remainder. The pseudo-quotient and pseudo-remainder are of course unique for each fixed pseudo-exponent.

We can always choose e = max(deg M − deg N + 1, 0), which need not be minimal (for example, when

M = N). A zero of N which does not annihilate its initial will be a zero of M if and only if it

is a zero of R.

Note: If R = 0, we no longer know that M ∈ (N), only that IeM ∈ (N) for some e.

The saturation ideal of an ideal J by an element I in a ring is defined as

J : I∞ = {M | IeM ∈ J for some e ∈ N }

When J is a principal ideal, say J = (N), the triple (e,Q, R) is unique for any M ∈ (N) : I∞ when

e is minimally chosen. We have:

R = 0 if and only if M ∈ (N) : I∞

whether e is minimal or not.

If you have not noticed already, it is not always necessary to pre-multiply the dividend by the entire

initial. In the example, it suffices to premultiply M and M ′ by 2, a factor of the initial. There is a

trade-off between extra computation and controlling the growth of the coefficients in pseudo-division.

For this talk, we do not consider efficiency issues. This subject involves GCD computations and is still

under research.
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We next look at the algorithm for multivariate polynomial rings K[x1, . . . , xn], where K may be a

field, or just an integral domain. We can have two different views.

The first is to view multivariate polynomials as they are. We need to order monomials. A

term-ordering is a total ordering of the set of all monomials, or power products, in the variables x1, . . . , xn

such that

1 < M for all monomials M, and

M1 < M2 =⇒ xiM1 < xiM2 for all monomials M1, M2 and 1 ≤ i ≤ n.

This is the Gröbner basis approach.

In K[x, y], the monomials look like xiyj and we may order two monomials M1 = xi1yj1 and M2 = xi2yj2

by saying M1 < M2 if i1 < i2, or if i1 = i2 and j1 < j2. Thus x2y3 < x3yk for any k. This is an example of

a purely lexicographic (or pure lex for short) term ordering. A pure lex term-ordering is determined

once we have ordered the variables themselves.

So pure lex with x > y > z in K[x, y, z] means that the exponent for x is compared before

the exponent of y, which is compared before the exponent of z.

Another term-ordering commonly used is the degree-lexicographic ordering, where deg-lex with

x > y means we first compare the total degree, then the exponent of x, followed by the exponent of y.

The second way to view multivariate polynomials is to treat them as univariate polynomi-

als in some main variable with coefficients that are polynomials in the remaining variables.

In practice, we usually rank2 the indeterminates, and single out one, usually, one with the highest rank, as

the main variable. This is the characteristic set approach. In this view, there is no need for an explicit

term-ordering since the monomials (powers of the main variable) are naturally ordered by degree in the

main variable.

2Abstractly as orderings on sets, a ranking is a generalization of a term-ordering. Here, we need only a linear order
(permutation induced) on the indeterminates. In general, we distinguish ranking from term-ordering.
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Suppose the coefficient field is Q, the field of rational numbers. Using pure lex with x > y term-

ordering, we will carry out the reduction steps in the following example.

Say we want to divide M by N , where

M = 5x3y2 − 10xy3 N = 2x2y + x2 + xy3.

Both M and N are already arranged with their terms in decreasing order with their leading terms in

blue. In each reduction step, we highlight in red the highest term among those that can be reduced (called

the head term). A head term need not be the leading term, and it depends on N .

1. M = (
5

2
xy)N + M1 where M1 = −5

2
x3y − 5

2
x2y4 − 10xy3

2. M1 = (−5

4
x)N + M2 where M2 =

5

4
x3−5

4
x2y4 +

5

4
x2y3 − 10xy3

3. M2 = (−5

4
y3)N + M3 where M3 =

5

4
x3 +

5

2
x2y3 +

5

4
xy6 − 10xy3

4. M3 = (
5

4
y2)N + M4 where M4 =

5

4
x3−5

4
x2y2 +

5

4
xy6 − 5

4
xy5 − 10xy3

5. M4 = (−5

8
y)N + M5 where M5 =

5

4
x3 +

5

8
x2y +

5

4
xy6 − 5

4
xy5 +

5

8
xy4 − 10xy3

6. M5 = (− 5

16
)N + M6 where M6 =

5

4
x3 − 5

16
x2 +

5

4
xy6 − 5

4
xy5 +

5

8
xy4 − 165

16
xy3

Notice that M6 contains no monomial divisible by the leading monomial of N . The sequence of head

terms in the remainders M1, . . . , M6 is strictly decreasing, which is one of the reasons why the procedure

terminates.
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If the coefficient domain K is not a field, say K = Z instead of K = Q, the division will

be replaced by pseudo-division. In the pure-lex example, N = 2x2y + x2 + xy3 and at each step, the

pseudo-remainder will be premultiplied by the initial 2 whenever needed.

1. 2M = (5xy)N + M1 where M1 = −5x3y − 5x2y4 − 20xy3

2. 2M1 = (−5x)N + M2 where M2 = 5x3−10x2y4 + 5x2y3 − 40xy3

3. M2 = (−5y3)N + M3 where M3 = 5x3 + 10x2y3 + 5xy6 − 40xy3

4. M3 = (5y2)N + M4 where M4 = 5x3−5x2y2 + 5xy6 − 5xy5 − 40xy3

5. 2M4 = (−5y)N + M5 where M5 = 10x3 + 5x2y + 10xy6 − 10xy5 + 5xy4 − 80xy3

6. 2M5 = (−5)N + M6 where M6 = 20x3 − 5x2 + 20xy6 − 20xy5 + 10xy4 − 165xy3

By dividing M6 by 24, we can recover the remainder when the coefficient field is Q. Thus it is more

efficient to perform pseudo-division over Z and then put back the necessary denominators. In theory, it

is easier to deal with fields, but in computation, it is easier to deal with the underlying integral domain if

the field is a quotient field.
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The remainder computed this way depends on the term-ordering.

Using deg-lex with x > y (recall this means we first compare the total degree, then the exponent of

x, followed by the exponent of y) to perform the reduction for the same example, we are done in one step.

M = 5x3y2−10xy3, N = xy3 + 2x2y + x2.

1. M = (−10)N + M1 where M1 = 5x3y2 + 20x2y − 10x2 (remainder)

Note that in this step, the term (in red) of M that is reduced is not the leading term.

Again M1 contains no monomial divisible by the leading monomial of N . Such a polynomial

is said3 to be Gröbner-reduced with respect to N .

Viewing multivariate polynomials as univariate polynomials in some main variable:

We may, for example, view K[x, y] as K[y][x], using x as the main variable. In our example,

M = 5y2x3 − 10y3x

N = (2y + 1)x2 + y3x

The initial of N is 2y + 1. The reduction is done by pseudo-division since the coefficient domain is now

K[y]. The remainder will be of lower degree in the main variable than the divisor. Such a

remainder is said to be algebraically reduced with respect to N and its main variable.

1. (2y + 1)M = (5y2)xN + M1 where M1 = −5y5x2 − (20y4 + 10y3)x

2. (2y + 1)M1 = 5y5N + M2 where M2 = (5y8 − 40y5 − 40y4 − 10y3)x

3In the literature, the term “reduced” is used without any qualifiers and is potentially a source of confusion.
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Now we are ready for differential polynomials. We need to recall what differential rings, and differential

ideals are, and some notations. Let’s do the ordinary case first, that is, rings equipped with only one

derivation.

A derivation on a ring K (always assumed commutative with unit) is simply a linear map

δ : K −→ K satisfying the product rule:

δ(ab) = aδ(b) + δ(a)b

A ring equipped with a single derivation is called an ordinary differential ring. Differentiation is often

denoted by the ′ notation, that is a′ = δ(a). An ideal J of K is a differential ideal if a′ ∈ J whenever

a ∈ J . The intersection of an arbitrary family of differential ideals is a differential ideal.

The differential ideal generated by a set of elements a1, . . . , ak is denoted by [a1, . . . , ak] and is the

smallest differential ideal containing a1, . . . , ak.

The differential polynomial ring over K in the differential indeterminates y1, . . . , yn, denoted

by K{ y1, . . . , yn }, is constructed as the polynomial ring over K over a family of (algebraic) indeterminates

y = { yi,j }1≤i≤n,j∈N and we make K[y] = K[{ yi,j }] into an ordinary differential ring by extending the

derivation δ on K:

δ(yi,j) = yi,j+1 for all i, j.

We identify yi,0 with yi, and will also write yi,j as y
(j)
i or δj(yi). These are called derivatives. Any family

of derivatives are algebraically independent over K.

An ordinary differential polynomial P is just an element of K{ y1, . . . , yn }. Any such P can involve

only finitely many derivatives v1, . . . , vr and hence P lives in a polynomial ring K[v1, . . . , vr] with finitely

many algebraic indeterminates. Even after a finite number of algebraic and differentiation operations, the

result will still live in a polynomial ring with finitely many algebraic indeterminates.

So we can apply the previously discussed division algorithms to differential polynomials.
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Let’s see what a differential polynomial P looks like: that depends on what view we take. Whether

we treat P as a multivariate polynomial in the derivatives that appear in P or as a univariate polynomial

using some derivative that appears in P as the main variable, we need a way to order the derivatives, that

is, to rank the derivatives.

A ranking of the differential indeterminates y1, . . . , yn is a total ordering of the set of derivatives

Y = { yi,j | 1 ≤ i ≤ n, j ∈ N } such that

v < δ(v) for all derivatives v, and

v1 < v2 =⇒ δ(v1) < δ(v2) for all derivatives v1, v2.

A ranking in particular is a total order on the n disjoint sets

Yi = { yi,j | j ∈ N }

and when viewed as a relation on the disjoint union of Yi, it is possible to include some not so intuitive

subsets of Yi ×Yj.

The order of a derivative yi,j is defined to be the integer j. For ordinary differential polynomial rings,

a commonly used ranking is an orderly ranking, which requires that

order(v1) < order(v2) =⇒ v1 < v2.

An orderly ranking for an ordinary differential ring is completely decided once the order on the

differential indeterminates is fixed. In this case, yi,j < yi′,j′ if either j < j′ or if j = j′ and yi < yi′ . For

n = 2, we may list the derivatives in order of increasing rank:

y1 < y2 < y′1 < y′2 < y′′1 < y′′2 < · · ·

A different ranking, called an unmixed ranking, is obtained by defining yi,j < yi′,j′ if i < i′ or if i = i′

and j < j′. The unmixed ranking is induced by the lexicographic order on the pairs (i, j). Every derivative

of y1 is of lower rank than every derivative of y2. Listed in order of increasing rank for n = 2:

y1 < y′1 < y′′1 < · · · < y2 < y′2 < y′′2 < · · ·
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Suppose we have selected a ranking. A differential polynomial is a linear combination (over the co-

efficient domain K) of differential monomials, which are monomials in the derivatives. A differential

monomial looks like this:

M =
∏

1≤i≤n,j∈N
y

ei,j

i,j

where all but a finite number of ei,j ∈ N are zero. If M involves only k derivatives, say

v1 = yi1,j1 , v2 = yi2,j2 , . . . , vk = yik,jk

where the pairs (i`, j`) are all distinct, then we may write

M = ve1
1 · · · vek

k = ye1
i1,j1 · · · yek

ik,jk
= (δj1yi1)

e1 · · · (δjkyik)
ek .

This multitude of notations provides us the convenience to suppress the amount of details as we please.

We can then write a differential polynomial P as simply:

P = a1M1 + a2M2 + · · · arMr (a1, . . . , ar ∈ K)

if P has r terms, where each Mt is a differential monomial as above, and we can “zoom-in” for the details

if we like.

With this multivariate view, we are ready to perform reduction by multivariate division. Or are we?
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We need a term-ordering! A term-ordering is more complicated to define for a polynomial ring

in infinitely many indeterminates, but since any finite set of polynomials live in a polynomial ring with

a finite number of indeterminates, that is not too difficult. If we are not concerned with differentiation,

we certainly can use any term-ordering that is compatible with the underlying ranking on the derivatives.

Two commonly used ones are the pure-lex and degree-lex term-ordering induced by the

ranking.

Suppose in K{ y1, y2 }, where we rank y1 higher than y2 in an orderly ranking, we want to divide

F = 5(y′1)
2(y′′2)

3 − 10(y′1)
3y′′2

by

G = (y′1)
3y′′2 + 2y′1(y

′′
2)

2 + (y′′2)
2.

If we examine these two differential polynomials more carefully, we will see that they only involve two

derivatives: y′1 and y′′2 and the rank of y′′2 is higher than the rank of y′1 because the ranking is orderly. Now

with a simplified notation, using x for y′′2 and y for y′1, then we have

F = 5x3y2 − 10xy3, G = xy3 + 2x2y + x2

which are exactly the M and N we had before. So you should be convinced that we can carry out the

divisions, either using the multivariate view or the univariate view.

But what if we are not so lucky? what if in F , one of the y′′2 is actually y′′′2 ?

We should be able to differentiate G to reduce F !
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So, how does one differentiate a differential polynomial?

The structure of the derivative of a differential polynomial P is best understood from the

univariate view point. We shall choose the derivative of the highest rank that appears in P as the

main variable. This derivative is called the leader of P and usually denoted by uP . In this view, we

can write P as a univariate polynomial in uP with coefficients in K[Y\{ uP }], that is, the coefficients are

differential polynomials not involving uP .

P = Idu
d
P + Id−1u

d−1
P + · · · I1uP + I0

Notice in this representation, all the “coefficients” Id, Id−1, . . . , I0 involve only derivatives of lower

rank than P . We call Id the initial of P and denote this by IP .

Applying the product and chain rules, we have

δ(P ) = P ′ = (dIdu
d−1
P + (d− 1)Id−1u

d−2
P + · · ·+ I1)δuP +

δ(Id)u
d
P + δ(Id−1)u

d−1
P + · · ·+ δ(I1)uP + δ(I0)

The leader of δP is δuP since v < uP =⇒ δv < δuP for any derivative v that appears in Ij. Since δP is

linear in δuP , the initial of δP is

IδP = dIdu
d−1
P + (d− 1)Id−1u

d−2
P + · · ·+ I1 =

∂P

∂uP

.

We call this initial the separant of P and denote it by SP .

We summarize this property by writing:

δP = SP δuP + terms involving lower derivatives.
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Back to the question:

But what if we are not so lucky? what if in F , one of the y′′2 is actually y′′′2 ? We should be

able to differentiate G to reduce F !

So let’s do that. Let

F = 5(y′1)
2(y′′′2 )3 − 10(y′1)

3y′′2

Here is the derivative of G:

G = (y′1)
3y′′2 + 2y′1(y

′′
2)

2 + (y′′2)
2

δ(G) = G′ = (y′1)
3y′′′2 + 3(y′1)

2y′′1y
′′
2 +4y′1y

′′
2y

′′′
2 + 2y′′1(y

′′
2)

2 +2y′′2y
′′′
2

= ((y′1)
3 + 4y′1y

′′
2 + 2y′′2)y

′′′
2 + 3(y′1)

2y′′1y
′′
2 + 2y′′1(y

′′
2)

2

= SGy′′′2 + T, where T is a sum of terms involving lower derviatives

Now since G′ is linear in y′′′2 , instead of the usual pseudo-division of F by G′ as univariate polynomials in

uG′ = y′′′2 (which would result in remainders that do not involve y′′′2 ), we can, equivalently, eliminate uG′

in F by substituting

y′′′2 =
δ(G)− (3(y′1)

2y′′1y
′′
2 + 2y′′1(y

′′
2)

2)

(y′1)3 + 4y′1y′′2 + 2y′′2
=

δG−T

SG

and then clearing the denominators. So we have

(SG)3F = Qδ(G) + 5(y′1)
2(−T)3 − 10(y′1)

3y′′2(SG)3

This is simply performing a regular univariate division in K(Y\uG′)[uG′ ] over a field, and then clearing

denominators in the resulting equation M = QN + R.
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The previous reduction may be called differential reduction in contrast to the earlier algebraic

reduction. The “official” name is partial reduction. So we can summarize partial reduction this way.

When working to partially reduce F by G, suppose a proper derivative of uG appears in F , say δjuG

appears, where j ≥ 1 is the highest possible. We differentiate G up to that order, obtaining:

δG = SGδuG + T1

δ2G = SGδ2uG + T2

...

δjG = SGδjuG + Tj

where each T` is a sum of terms involving derivatives that are lower than δ`uG. We then perform sub-

stitutions and clear denominators that are always powers of SG (equivalently, perform univariate pseudo-

divisions of F by δjG, δj−1G, . . . , δG, in that order). We will get

Ss
GF = Q1δ(G) + Q2δ

2(G) + · · ·Qjδ
j(G) + F̃

where F̃ will not contain any proper derivatives of uG. We call F̃ the partial remainder of F with

respect to G. A differential polynomial P is said to be partially reduced with respect to G if

P does not contain any proper derivatives of uG.

Observe that we can continue to (algebraically) reduce F̃ using unvariate pseudo-division by G so that

if the leader uG of G appears in the remainder, it will be of lower degree than the degree of uG in G.

Combining, the complete reduction of F by G results in an equation of the form:

I i
GSs

GF = Q0G + Q1δ(G) + Q2δ
2(G) + · · ·Qjδ

j(G) + F0

The remainder F0 has the property that it is both partially reduced and algebraically reduced with respect

to G. It is called the Ritt-Kolchin remainder and is obtained using a specific sequence of reductions as

described.
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It is fairly straight forward to generalize all the previous algorithms to the partial differential polyno-

mial ring. A partial differential ring is a ring K equipped with a number of commuting derivations

δ1, . . . , δm (that is, δiδja = δjδia for all i, j and all a ∈ K). The set of these specific derivations is denoted

by ∆. The partial differential polynomial ring in the differential indeterminates y1, . . . , yn is de-

noted by K{ y1, . . . , yn } and is constructed as the polynomial ring in the family { y
i,~k∈Nm } of (algebraic)

indeterminates over K, where the given derivations of K are extended by defining:

δjyi,(k1,...,kj ,...,km) = yi,(k1,...,kj+1,...,km) for all i, j, k1, . . . , km

We identify yi,(0,...,0) with yi and write θyi for yi,(k1,...,km) where θ = δk1
1 · · · δkm

m . We call any such θ a

derivative operator, and any such θyi a derivative of yi. The set of derivative operators is denoted by

Θ and the set of derivatives by Y.

A ranking is a total ordering of Y such that

v < δv for all derivatives v, and

v1 < v2 =⇒ δ(v1) < δ(v2) for all derivatives v1, v2 and all δ ∈ ∆.

A ranking in particular is a total order on the union of n disjoint sets

Yi = { yi,(k1,...,km) | (k1, . . . , km) ∈ Nm }

When restricted to Yi for a fixed i, it is equivalent to a term-ordering on the formal polynomial ring

K[δ1, . . . , δm] when the derivative δk1
1 · · · δkm

m yi is identified with the monomial δk1
1 · · · δkm

m .

The order of a derivative yi,(k1,...,km) is defined to be the sum of the integers kj. A commonly used

ranking is an orderly ranking, which requires that

order(v1) < order(v2) =⇒ v1 < v2.

An orderly ranking example is one induced by the lexicographic order on (k1 + · · ·+ km, i, k1, . . . , km−1).
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As for the ordinary case, a differential monomial M is a monomial in the derivatives. If M involves

only ` derivatives

v1 = θ1yi1 , v2 = θ2yi2 , . . . , v` = θ`yi`

where the pairs (iν , θν) are distinct, we may write

M = ve1
1 · · · ve`

` = (θ1yi1)
e1 · · · (θ`yi`)

e` .

A differential polynomial is again a linear combination of differential monomials with coefficients in K.

Any differential polynomial P involves only finitely many derivatives, and the one with the highest rank

is called its leader and denoted by uP . initial and separant are defined exactly the same way as the

ordinary case and we again have:

δP = SP δuP + T, where T is a sum of terms involving lower derivatives

More generally, for any derivative operator θ ∈ Θ, we have

θP = SP θuP + T, where T is a sum of terms involving lower derivatives

A term-ordering can be induced using either pure-lex or degree-lex and be compatible with a given

ranking, and hence Gröbner reduction (multivariate view), algebraic reduction (univariate pseudo-division)

can be performed as before. For partial reduction, suppose F involves a proper derivative of the leader uG

of G, say the derivative is v = θuG where θ 6= 1. Choose v such that it is of highest possible rank. We can

then eliminate v from F by the substitution of v = θG−T
SG

and then clear denominator. Repeat the same

for the pseudo-remainder thus obtained until F is partially reduced.

Again, a complete reduction of a differential polynomial F by another G results in an equation of the

form:

I i
GSs

GF ≡ F0 (mod [G])
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We now return to the ideal membership problem. Recall (p. 6):

We need to find a specific ordering of all the divisors and a specific order in the reduction

steps that would guarantee the converse: if m is in the ideal (n1, n2), then the computed

remainder must be zero.

Just as for integer divisions, for both polynomial and differential polynomial reductions, we are con-

cerned only that if F belongs to an ideal, then its remainder should be zero. The actual divisors used are

not important. In the polynomial ring (over a field) case, a basis G of an ideal J such that every

element F ∈ J is Gröbner-reduced to zero is called a Gröbner basis of J . There is an algorithm,

called the Buchberger algorithm, that, given any basis of J , computes a Gröbner basis of J , which is

always finite. With a Gröbner basis, the remainder obtained by Gröbner reduction is unique and inde-

pendent of the reduction steps and hence Gröbner reduction provides a test for ideal membership. End of

story.

In the differential polynomial ring case, a differential ideal need not be finitely generated. Moreover,

because of pseudo-division, even if the differential ideal is finitely generated, say by A1, . . . , Ar, the Ritt-

Kolchin remainder F0 of a differential polynomial F only satisfies the following relation:

I i1
A1
· · · I ir

Ar
Ss1

A1
· · ·Ssr

Ar
F ≡ F0 (mod [A1, . . . , Ar])

The vanishing of F0 only says that

I i1
A1
· · · I ir

Ar
Ss1

A1
· · ·Ssr

Ar
F ∈ [A1, . . . , Ar]

or F ∈ [A1, . . . , Ar] : H∞ where

H = IA1 · · · IArSA1 · · ·SAr

which is often known as the product of initials and separants of A1, . . . , Ar. Moreover, we have

not yet specified the order of partial reductions steps and algebraic reductions steps when more than one

divisor is involved.
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It is time to introduce the notion of an autoreduced set. Suppose we are given a finite set of

polynomials (or differential polynomials) A1, . . . , Ar. Given a reduction procedure of a polynomial F by

another G, we have associated with it a notion of being reduced.

For Gröbner reduction, F is Gröbner reduced with respect to G if F contains no monomials which

is a multiple of the leading monomial of G (p. 12).

For algebraic reduction, F is algebraically reduced with respect to G if the degree of the main

variable in F is lower than that in G.

For partial reduction, F is partially reduced with respect to G if no proper derivative of the leader

of G appears in F . Note that being partially reduced is to be algebraically reduced with respect to each

derivative θG when the main variable is θuG (and hence θuG does not appear at all in F , for all θ 6= 1).

For Ritt-Kolchin reduction, F is reduced with respect to G if it is both partially reduced and

algebraically reduced when the main variable is uG.

A set A1, . . . , Ar is (Gröbner, algebraic, partial, or Ritt-Kolchin) autoreduced if each Ai is (resp.

Gröbner, algebraic, partial, Ritt-Kolchin) reduced with respect to every other Aj.

We note that by definition, an empty set is autoreduced and a set consisting of a single polynomial not

in K is autoreduced.

Perhaps we should also consider the numerical reduction (division): A natural number m is (nu-

merical) reduced with respect to another natural number n if m < n. Then a numerical autoreduced set

of natural numbers must be a singleton. In fact, given a finite set of natural numbers n1, . . . , nr, then the

ideal generated by n1, . . . , nr has a unique autoreduced subset which is simply the set consisting of only

the GCD n of n1, . . . , nr, which is obtained by autoreducing the given set (the Euclidean GCD algorithm).

Obviously we have (n) = (n1, . . . , nr) and any m in the ideal must have a remainder 0 when divided by n

and conversely.
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With each type of reduction, we start with some kind of total order ≤ on some set T . Indeed, the

total order is a well-ordering, and we can define a map that associates to every polynomial (differential

polynomial) F that is not in the coefficient domain K an element of T called the rank of F . We can then

induce a pre-order4 ¹ on all such polynomials by saying that F ¹ G if rank F ≤ rank G; and we say in

case F ≺ G that F has lower rank than G or F is lower than G. Of course, two distinct differential

polynomials may have the same rank. We can further extend this preorder to the entire polynomial

(differential polynomial) ring by defining every element of the coefficient domain K is lower than every

polynomial not in K.

For Gröbner reduction, we have a term-ordering on the set of monomials, and all term-orderings are

well-orderings. We can define the Gröbner rank of F to be the leading monomial of F , relative to the

given term-ordering.

For algebraic reduction, we have the well-ordering on N, which may be identified with the set of

powers of the main variable. We can define the algebraic rank of F to be the degree of the main variable

in F . For numerical reduction, the numerical rank of n is n itself.

For partial reduction, we have a ranking on the set Y of all the derivatives, and every ranking is a

well-ordering. We can define the partial rank of F to be the leader uF of F .

For Ritt-Kolchin reduction, we have a total ordering on the set of powers of the derivatives using

the lexicographic order on (v, j) after identifying it with vj. This total ordering is a well-ordering. We

can define the Ritt-Kolchin rank of F to be the pair (uF , dF ) where uF is the leader of F and dF is the

degree of uF in F .

If F is lower than G, then F is reduced with respect to G (in all cases).

The converse is true only for the algebraic or numerical reduction case.

4Recall that a preorder is defined as a reflexive and transitive relation.
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Every autoreduced set is finite.

Given two autoreduced sets A : A1, . . . , Ar and B : B1, . . . , Bs, and suppose each is arranged in non-

decreasing order of rank. Then since the sets are autoreduced, they are actually in increasing order of

rank. We can now extend the preorder induced by rank to autoreduced sets as follows:

We say A has lower rank than B if either there exists an index t, 1 ≤ t < min(r, s) such that

rank Ai = rank Bi for 1 ≤ i ≤ t and rank At+1 < rank Bt+1, or r > s and rank Ai = rank Bi for 1 ≤ i ≤ s.

In every non-empty set of autoreduced sets, there exists an autoreduced set of lowest

rank.

Something to think about:

Every polynomial ideal J contains a Gröbner-autoreduced subset G of lowest Gröbner rank. Is G a

Gröbner basis for J , that is, will every F ∈ J be Gröbner-reduced to zero by G?

Every polynomial ideal J contains an algebraic-autoreduced subset C of lowest algebraic rank. What

does it mean? Is C an (algebraic) characteristic set, that is, will every F ∈ J be algebraic-reduced to

zero by C?

Every differential polynomial ideal J contains a partial-autoreduced subset P of lowest partial-rank.

What does it mean?

Every proper differential polynomial ideal J contains a Ritt-Kolchin autoreduced subset A of lowest

Ritt-Kolchin rank. It is called a characteristic set of J . Every element F ∈ J that is Ritt-Kolchin

reduced with respect to A must be zero and hence every F ∈ J will be Ritt-Kolchin reduced to zero by A.
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Let R = K{ y, z } be an ordinary differential polynomial ring.

Suppose the ranking is orderly and satisfies z < y. Let

A1 = y2 + z, A2 = y′ + y.

Then

Γ: A1 < A2

is algebraic autoreduced as a subset of polynomials in S = K[z, y, y′] and is of lowest algebraic rank for

the ideal J = (A1, A2) of S, which is prime. However, Γ is not partial autoreduced, because A2 is not

partially reduced with respect to A1.

The differential ideal a = [A1, A2], while also prime, has a Ritt-Kolchin characteristic set

A: A1 < A3

where

A3 = A′
1 + 2A1 − 2yA2 = z′ + 2z.

A has lower Ritt-Kolchin rank than Γ.

We have a = [A]: 2y where 2y is the product of initials and separants of A. Thus an algebraic

characteristic set of a prime ideal need not be a Ritt-Kolchin characteristic set of the differ-

ential ideal it generates. The ideal J , being a subset of a, is does not contain any non-zero element

Ritt-Kolchin reduced with respect to A, but contains A2 which is algebraic-reduced with respect to A as

a polynomial in K[z, y, z′, y′]. Also, A3 is a non-zero differential polynomial which is Ritt-Koclhin reduced

with respect to Γ.
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What’s next?

Characteristic sets are used to study prime differential ideals and radical differential ideals. There is

a algorithm to compute a characteristic set of a prime differential ideal and then it can be used to test

membership in prime differential ideals.

There is also an algorithm to decompose a radical differential ideal into its prime differential compo-

nents. Thus we can also test membership in radical differential ideals.

These algorithms depend heavily on a property called the Rosenfeld property, which is implied if an

autoreduced set is coherent. This property allows one to push problems in differential polynomial algebra

to problems in polynomial algebra.

There is the Ritt-Raudenbush Basis Theorem, which states that every radical differential ideal is the

smallest radical differential ideal containing a certain finite set of differential polynomials.

There are two theorems on the components of a single differential polynomial. The first concerns the

general component of an irreducible differential polynomial, and the second states that each component is

the general component of some irreducible differential polynomial.

There are more deep theorems.

There are the Buchberger algorithm and applications of Gröbner basis.
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Introduction to Computational Differential Algebra, II

William Sit, City College of New York

October 14 and 28, 2005

Second of two lectures as part of Graduate Center Series

For Kolchin Seminar in Differential Algebra, 2005–6

Abstract

Under both Ritt and Kolchin, basic differential algebra was developed from a constructive view
point and the foundation they built has been advanced and extended to become applicable in symbolic
computation. In the first talk, we begin with a study of the division algorithm and how it may be
modified and used to perform reductions in polynomial rings, ordinary and then partial differential
polynomial rings. The abstract notions of (partial) differential rings, fields, and differential polynomi-
als will be covered and no prerequisite is necessary. We will use examples to illustrate how differential
polynomials may be ordered and manipulated algebraically using Euclidean-like division. The goal is
to apply the reduction algorithms for ideal membership decisions, when possible, and to ”simplify”
a given system of algebraic differential equations like reducing the order, degree, and number of un-
knowns, or breaking the system up into ”simpler” systems. We will compare this with the analogous
operations on algebraic systems. More formally, we will cover the concepts of term-ordering and
ranking, partial reduction and reduction, autoreduced sets, Grobner basis and characteristic sets.

In the second talk, we will discuss methods to compute Grobner basis and characteristic sets and
the role they play in computational differential algebra: Are there constructive methods, though not
necessarily efficient, to solve basic decidability problems? Each algebraic problem has a differential
version simply by adding the word ”differential” to appropriate places. The ideal membership problem,
“Can we tell if a given (differential) polynomial ideal contains a given (differential) polynomial?” will
be revisited. Other questions to be discussed are: Can we tell if a given (differential) polynomial ideal
is prime? or radical? Does a (differential) polynomial ideal have a finite basis? How do the algebraic
and differential analogs differ?

Both this talk and the October 28 talk will be informal and aimed at beginning graduate students.
More rigorous treatment is available from my tutorial paper.

28



Dickson’s Lemma,5 is a result on the product order of Nm. There are many versions. For ease of

exposition, given a lattice point p in Nm, let Cp be the translate p + Nm based at p and we call this the

cone at p. If q ∈ Cp, we also say p divides q (p ≤ q in the product order).

1. In any infinite sequence of points p1, p2, . . ., there is a subsequence pk1 , pk2 , . . . such that pki

divides pki+1
(pki

≤ pki+1
).

Proof: If m = 1, this is clear. Suppose m > 1. Let p′1, p
′
2, . . . be the sequence obtained by projecting each

point to Nm−1 by removing the first coordinates. By induction, there is a subsequence p′k1
, p′k2

, . . . such

that p′ki
divides p′ki+1

for every i. There is a further subsequence of pk1 , pk2 , . . . that is non-decreasing.

2. Any union of cones is a finite union of cones.

1. implies 2. Let P be a union of cones. Let p1 be in P . If possible, let p2 be an element of P\Cp1 . In

general, if possible, let pk be an element of the complement in P of the union of the cones at p1, . . . , pk−1.

If this process stops, then P is a finite union of cones. If not, we obtain an infinite sequence where no

member is in the union of the cones of earlier members. This contradicts 1. (or 3., 4.)

3. In any infinite sequence of points p1, p2, . . ., there exists a natural number N ∈ N such that

for all j > N , pi divides pj for some i ≤ N .

2. implies 3. Let P be the union of the cones based at pk, k ≥ 1. Then P is a finite union of cones

and hence of cones based at some pj1 , . . . , pjs . Take N = max{ j1, . . . , js }.
4. In any infinite sequence of points p1, p2, . . ., there exist indices i < j such that pi divides pj.

3. implies 4. Trivial.

5. Any sequence of points p1, p2, . . . such that pi+1 properly divides pi (pi > pi+1) for all i is finite.

(There are no infinite strictly decreasing sequences: the product order is well-founded.)

4. implies 5. If the sequence were infinite, there would be some i < j such that pi divides pj, but pj

properly divides pi by hypothesis.

5Cox, Little and O’Shea: Theorem 5 of Chapter 2; Kolchin: Lemma 15 of Chapter 0.
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Any term-ordering of the set of monomials in m algebraic indeterminates is a well-ordering.

Any ranking of the set of derivatives Y is a well-ordering.

Proof: A term-ordering respects the product order (that is, if p ≤ q, then Xp ≤ Xq where Xp stands

for xp1
1 · · · xpm

m ). Hence a sequence of monomials strictly decreasing with respect to a term-ordering, if

infinite, corresponds to an infinite sequence of lattice points, which must have an infinite subsequence, non-

decreasing with respect to the product order and hence with respect to the term-ordering, a contradiction.

Similarly for a ranking. Any sequence of derivatives strictly decreasing with respecst to a ranking must

be finite because for any differential indeterminate yj, the strictly decreasing subsequence consisting of

terms that are derivatives of yj must be finite.

As corollaries:

Hilbert Basis Theorem. Every ideal in K[x1, . . . , xm] is finitely generated.

Proof: Fix a term-ordering. The set of Gröbner ranks (leading monomials) of all elements in a polynomial

ideal I corresponds to a union P of cones in Nm, which is a finite union of cones. Let the bases of these

cones correspond to the Gröbner ranks of G1, . . . , Gs, with Gi ∈ I. Then I is generated by G1, . . . , Gs.

Indeed, the Gi form a Gröbner basis: Let F ∈ I. Performing successive Gröbner reductions yields a

relation of the form:

F = Q1G1 + · · ·+ QsGs + R

where R is Gröbner-reduced with respect to every Gi. If R 6= 0, the Gröbner rank of R would correspond

to a point in P , which would mean that R is not Gröbner reduced with respect to some Gi.

A linear differential ideal is finitely generated (as a differential ideal).

Proof: Similar, using Ritt-Kolchin reduction (but much simplified) instead of Gröbner reduction.
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Let’s see how we can expand a given set to an autoreduced set. Let F1, . . . , Fr be a given set of

polynomials or differential polynomials, as the case may be. If r = 0 or r = 1, then the set is autoreduced.

Suppose r > 1. We arrange F1, . . . , Fr in order of non-decreasing rank. For simplicity, assume the coefficient

domain K is a (differential) field.

For algebraic reduction Any two polynomials with different main variables are algebraic autoreduced.

If the main variables are the same, we can reduce the one with higher rank (degree) by the one with lower

rank using pseudo-division. This is analogous to the Euclidean algorithm for GCD. Let M and N be such

a pair among the given polynomials with common main variable v. Writing:

A0 = M = I0v
d0 + · · · , A1 = N = I1v

d1 + · · ·

where d1 ≤ d0, we obtain a pseudo-division triple when we divide A0 by A1:

Ie1
1 A0 = Q1A1 + A2

where A2 = I2v
d2 + · · · has the property that d2 < d1. If d2 > 0, we continue and divide A1 by A2 and so

on, yielding a finite sequence A0, A1, A2, . . . , Ar when Ar no longer involves v.

I
ej

j Aj−1 = QjAj + Aj+1 (1 ≤ j ≤ r − 1)

It is easy to see that Aj ∈ (M, N) for all j. If Ar = 0, then Ar−1 ∈ (M, N), Ar−1 has lower degree in v

than d0, Ar−2 ∈ (Ar−1) : Ir−1, but we do not know about M and N . We need to reduce M, N by Ar−1.

If Ar 6= 0, then Ar does not involve v, Ar ∈ (M, N) and the main variable of Ar is lower than v.

Again, we need to reduce M, N with respect to Ar with a new main variable.

From this, we see that for each variable v, there can be at most one polynomial with v as

main variable in an autoreduced set. Thus every algebraic autoreduced set is finite.
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Example. Let M = 5y2x3 − 10y3x, N = (2y + 1)x2 + y3x. We have

(2y + 1)2M = (5y2(2y + 1)x− 5y5)N + A2,

(5y8 − 40y5 − 40y4 − 10y3)N = ((2y + 1)x + y3)A2

where A2 = (5y8 − 40y5 − 40y4 − 10y3)x.

Note that N ∈ (A2) : (5y8 − 40y5 − 40y4 − 10y3)∞.

but also M ∈ (A2) : (5y8 − 40y5 − 40y4 − 10y3)∞.

So the singleton set A2 is the lowest autoreduced subset (or characteristic set) of (M,N) and

(M, N) ⊂ (A2) : (5y8 − 40y5 − 40y4 − 10y3)∞.

For example, x /∈ (M, N).

Example. Let M = 5y2x2 − 10y3, N = (2y + 1)x + y3. We now only have

(2y + 1)2M = (5y2(2y + 1)x− 5y5)N + A2

where A2 = 5y8 − 40y5 − 40y4 − 10y3

with a new main variable y. Note that since N is reduced with respect to A2, and

M ∈ (N, A2) : (2y + 1)∞

the set {N,A2 } forms an autoreduced set and is lowest.
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Buchberger’s Algorithm

Input: A term ordering, polynomials A1, . . . , Ar (assumed not in K).

Output: A Gröbner basis G1, . . . , Gs for the ideal (A1, . . . , Ar).

Step 1 Let G be the set {A1, . . . , Ar }

Step 2 Form the set B of all pairs (Ai, Aj), 1 ≤ i < j ≤ r

Step 3 While B is not empty, pick a pair, say (M,N). Delete this from B. Let XM be the Gröbner rank

of M and similarly for XN . Compute the LCM XM,N of XM , XN . Let cM be the coefficient for XM

in M , and similarly let cN be the coefficient for XN in N . Compute the S-polynomial

S(M,N) =
1

cM

XM,N

XM

M − 1

cN

XM,N

XN

N.

Gröbner reduce S(M,N) by the set G. Let the remainder be R.

Step 4 If R 6= 0, adjoin the pairs (F,R) for every F ∈ G, and adjoin R to G.

Step 5 Repeat Steps 3 and 4 until B is empty, at which point, G is a Gröbner basis.

Proof: First, the algorithm terminates because at each iteration, we add to G possibly an element R

whose rank (leading monomial) corresponds to a point in Nm outside the union of cones based at points

corresponding to the ranks of G. If the algorithm does not terminate, this produces an infinite sequence of

points where each point is not divisible by any of the preceding points. This contradicts Dickson’s Lemma.

When the algorithm stops, all S-polynomials of pairs in B are reduced to zero.

Theorem. A set G1, . . . , Gs is a Gröbner basis of the ideal it generates if and only if all

S-polynomials S(Gi, Gj) reduces to 0.
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Let R = K[t, x, y, z] and we use the pure lex term ordering with respect to t > x > y > z. Let

A1 = xz + y, A2 = x− yz, A3 = tz− 1.

Let Si,j denote S(Ai, Aj) and let
A−→ denote a Gröbner reduction by A. Then

S1,2 = A1 − zA2 = yz2 + y =: A4

S2,3 = tzA2 − xA3 = −tyz2 + x
A3−→x− yz

A2−→0

Observe that in general, if XM , XN are relatively prime, then XM,N = XMXN and S(M, N)
M,N−→0.

S(M, N) =
1

cM

XN(cMXM + TM)− 1

cN

XM(cNXN + TN)

=
1

cM

XNTM − 1

cN

XMTN

N−→ 1

cM

(− 1

cN

RN)TM − 1

cN

XMTN

M−→ 1

cM

(− 1

cN

RN)TM − 1

cN

(− 1

cM

RM)TN = 0

S1,3 = tA1 − xA3 = ty + x
A2−→ty + yz =: A5

S1,4 = yzA1 − xA4 = y2z− xy
A2−→y2z − yz = 0

S1,5
A1,A5−→ 0, S2,4

A2,A4−→ 0, S2,5
A2,A5−→ 0

S3,4 = yzA3 − tA4 = −ty − yz
A5−→0

S3,5 = yA3 − zA5 = −yz2 − y
A4−→0

S4,5 = tA4 − z2A5 = ty − yz3 A5−→−yz3 + yz
A4−→yz − yz = 0

So A1, A2, A3, A4, A5 form a Gröbner basis.
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Here’re some computational problems from algebraic geometry solvable by Gröbner basis

methods. Let G1, . . . , Gr, and F, F1, F2 be polynomials in R = K[x1, . . . , xm]. Let J = (G1, . . . , Gr).

1. Congruence Decide if F1 ≡ F2 (mod J).

2. Ideal Membership. Decide if F belongs to the ideal J .

3. Syzygies. Compute a fundamental set of r-tuples of polynomials A1, . . . , Ar such that
∑r

i=1 AiGi = 0.

4. Free Resolution. Compute a finite free resolution of the ideal J .

5. Radical Ideal Membership. Decide whether F ∈ √J . If the coefficient domain is an algebraically

closed field K, by the Nullstellensatz, this is equivalent to deciding whether the algebraic set consisting

of common zeros of G1, . . . , Gr is contained in the hypersurface F = 0. This problem reduces to an

ideal membership problem whether 1 ∈ (G1, . . . , Gr, Fz−1) for the polynomial ring K[x1, . . . , xm, z].

Special case when F = 1: decide whether there are any common zeros.

6. Common zeros. Decide if the set of common zeros is finite or infinite. If finite, find the polynomial

of minimal degree in J ∩K[x1].

7. Ideal Intersection. Given two polynomial ideals J1, J2 by ideal generators, find a set of generators

for J1 ∩ J2. Special case: find the projection ideal J ∩K[x1, . . . , xs] where 1 ≤ s ≤ m.

8. Saturation Ideal Compute the saturation ideal J : F∞.

9. Radical Ideal. Compute a basis for
√

J .

10. Primary and Prime Decompositions. Compute a primary decomposition of J and a prime

decomposition of
√

J .

11. Primality Test. Decide whether J is prime, and if not, find F1, F2 such that F1F2 ∈ J but

F1, F2 /∈ J .

12. Radicality Test. Decide whether J is radical, and if not, find a polynomial F and a natural number

e such that F e ∈ J but F /∈ J .

13. Hypersurface Test. Decide whether J is a principal ideal or not.
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14. Hilbert Function and Poincare Series If G1, . . . , Gr are homogeneous, compute the Hilbert

function

HR/J
(n) = dimK(R/J)n

which, for sufficiently large n, is a polynomial in n, and compute the Poincare Series (generating

function for H)

PR/J
(z) =

∑
n

HR/J
(n)zn =

Q(z)

(1− z)d

where d is the degree of the Hilbert polynomial and d = dim J .

15. Basis If G1, . . . , Gr are homogeneous, compute a basis of R/J as a K-vector space and a multipli-

cation table for R/J .

16. Canonical Simplifier. If F ≡ F0 (mod J), what is the “simpliest” form of F0 and how to compute

it?

17. Solving Congruence. If R/J is finite dimensional, and given F1, F2, decide if there is an F such

that F1F ≡ F2 (mod J) and if yes, find F .

18. Invertibility Test. Special case of solving a congruence: If R/J is finite dimensional, decide whether

F is invertible mod J . Equivalently, whether 1 ∈ (G1, . . . , Gr, F ).

19. Rationalize expressions involving surds. For example, find the inverse of x +
√

2 +
3
√

32 (as a

polynomial in x,
√

2, and 3
√

3).
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The Rosenfeld Property

An autoreduced set A of differential polynomials is said to have the Rosenfeld Property if every

differential polynomial F in the differential ideal a = [A] : H∞
A that is partially reduced with respect to A

is already in the ideal J = (A) : H∞
A .

For A to have the Rosenfeld property, it is sufficient that all differential S-polynomials

∆(A,A′, v) := SA′θAA− SAθA′A
′ A−→0

whenever A,A′ ∈ A has a least common derivative v = θAuA = θA′uA′

If A has the Rosenfeld property, then:

• a is prime if and only if J is prime.

• a is radical if and only if J is radical.

• a has the property that there is no non-zero differential polynomial in a that is reduced with respect

to A if and only if J has the property. This property is called the zero-reduced property.

If A has the Rosenfeld property and if J is prime and zero-reduced, then A is a charac-

teristic set of a (and a is prime). A differential polynomial F belongs to a if and only if the

Ritt-Kolchin remainder of F with respect to A is zero.

With the help of the Rosenfeld property, some important properties of the differential ideal [A] : H∞
A

can be decided by corresponding properties of the ideal J = (A) : H∞
A in R K{ y1, . . . , yn }. However, we

need to place J into a polynomial ring with finitely many indeterminates to use Gröbner base techniques.

Fortunately, these properties do not depend on which polynomial ring J lives as long as all the derivatives

appearing in A are there.
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Invertibility of Initials

Let A : A1 < · · · < Ar be an autoreduced set. Suppose vk is the leader of Ak. Let V be the

set of derivatives appearing in A and consider the polynomial ring K[V ] = S0[v1, . . . , vr] where S0 =

K[V \{ v1, . . . , vr }]. Let Sk = S0[v1, . . . , vk]. For any differential polynomial F ∈ Sk, the following are

equivalent:

1. F is invertible modulo (A1, . . . , Ak) · Sk

2. There exist L ∈ S0, L 6= 0, and M ∈ Sk such that L = MF mod (A1, . . . , Ak).

3. S0 ∩ (A1, . . . , Ak, F ) · Sk 6= (0).

By 3., clearly invertibility is decidable by using Gröbner basis in K0[v1, . . . , vk] where K0 is the

quotient field of S0.

We say A has invertible initials if each initial Ik of Ak is invertible as a polynomial in Sk−1. If r = 1,

then I1 is always invertible. If A has invertible initials, then we have a number of nice properties:

• Sk · (A1, . . . , Ak) ∩ S0 = (0).

• K0[v1, . . . , vr]/(A) is a non-trivial finite dimensional vector space over K0.

• F is invertible if and only if F /∈ (A) and F is not a zero-divisor modulo (A).

These properties provide a linear algebra method to test invertibility of F and if F is not invertible, we

can compute a G ∈ Sr such that G is algebraically reduced with respect to A and GF ∈ (A) but G /∈ (A).
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Algorithm A(W )

Input: A differential polynomial ring R = K{ y1, . . . , yn } with a ranking on Y and a non-empty finite

set W ⊂ R

Output: A finite, possibly empty, set A = A(W ) of autoreduced sets of R such that for each A ∈ A,

qA = [A]: H∞
A is prime with characteristic set A, and {W } = ∩A∈A qA.

[Step 1: ] If W contains a non-zero element of K, Return ∅.
Ignore the case when the radical differential ideal is the unit ideal.

[Step 2: ] A := autoreduced subset of W of lowest rank

A brute force way would be to form all subsets of W and verify if any is autoreduced. Among those

that are, pick the one with lowest rank.

[Step 3: ] For all F ∈ W,F /∈ A do

[Step 3a: ] F0 := Ritt-Kolchin remainder of F with respect to A

[Step 3b: ] If F0 6= 0, Return A(W + F0).
6

Adjoin F0 to W if we get a lower rank differential polynomial and start over. If all other elements of

W are reduced to zero, we have W ⊂ [A] : H∞
A .

6Here, W + F0 means F0 is adjoined to W .
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[Step 4: ] For all A,A′ ∈ A do

[Step 4a: ] If uA, uA′ has a least common derivative v = θAuA = θA′uA′

[Step 4a.1: ] F := ∆(A,A′, v) = SA′θAA− SAθA′A
′

This is the differential version of the S-polynomial. It has a rank strictly lower than v. We are

checking coherence here.

[Step 4a.2: ] F0 := Ritt-Kolchin remainder of F

[Step 4a.3: ] If F0 6= 0, Return A(W + F0).

Again, if we get something of lower rank and reduced, adjoin it and start over. Otherwise, A is

coherent.
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[Step 5: ] Sort A: A1 < . . . < Ap by rank.

V := the set of derivatives θyj appearing in A

S0 := K[V \{ v1, . . . , vp }], where vk is leader of Ak

We are now in a finite polynomial ring. All the differential algebra is done. All differential polynomials

are partially reduced with respect to A by the choice of V since A is autoreduced.

[Step 5a: ] For k = 2, . . . , p do

[Step 5a.1: ] If the initial Ik of Ak is not invertible with respect to Ak−1 : A1 < · · · < Ak−1,

[Step 5a.1.1: ] find a non-zero Gk ∈ S0[v1, . . . , vk−1], Gk /∈ (Ak−1),

Gk reduced with respect to Ak−1 and GkIk ∈ (Ak−1)

[Step 5a.1.2: ] Return A(W + Ik) ∪ A(W + Gk).

If the initials are not invertible, we split because something in the ideal factors. We can test in-

vertibility using linear algebra or Gröbner basis. The linear algebra method provides Gk when the

answer is negative.
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[Step 6: ] Let I :=
∏p

k=1 Ik and JV
I := (A): I∞ (compute a Gröbner basis of JV

I )

[Step 6a: ] If JV
I = (1), Return the union of A(W + Ik) for all 1 ≤ k ≤ p.

If JV
I is the unit ideal, then some power of I belongs to (W ) and we need to split again.

[Step 6b: ] If JV
I is not prime

[Step 6b.1: ] Find non-zero F, F ′ ∈ S0[v1, . . . , vp] such that

FF ′ ∈ JV
I , F, F ′ /∈ JV

I

This is also effective by Gröbner basis method since we can compute a Gröbner basis for the radical

ideal
√

JV
I and test if

√
JV

I ⊂ JV
I to see if JV

I is radical. If yes, a prime decomposition can be

computed to see if it is prime. If there are more than one component, we can use ideal membership

tests to find the F, F ′.

[Step 6b.2: ] F0 := Ritt-Kolchin remainder of F

[Step 6b.3: ] F ′
0 := Ritt-Kolchin remainder of F ′

[Step 6b.4: ] Return the union of A(W + Ik) for all 1 ≤ k ≤ p,

and A(W + F0), A(W + F ′
0).

If the ideal is not prime, we need to split and start over.
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[Step 7: ] If S :=
∏p

k=1 Sk ∈ JV
I

[Step 7a: ] Return the union of A(W + Ik) and A(W + Sk) for all 1 ≤ k ≤ p.

If S ∈ JV
I , then since JV

I is prime, it means some factor of S is in JV
I and since separants are lower,

we need to split and start over. Alternatively, S ∈ JV
I means SI ∈ (W ).

[Step 8: ] Return the union of A(W + Ik) and A(W + Sk) for all 1 ≤ k ≤ p,

and the set with the singleton A.

Now A is a characteristic set of for [A] : H∞
A = {W } : HA. This is related to the radical differential

ideal {W } by the equation:

{W } = {W } : HA ∩ {W + H }
We found one prime and the others can be found by repeating the procedure on W with HA adjoined.
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